Groundwater, Surface Water, and Sediment Monitoring for Pesticides and Nitrate in Billings, Montana

Rick Mulder and Christian Schmidt Hydrologists Montana Department of Agriculture Helena, Montana

April 2011

Table of Contents

1.0 INTRODUCTION	. 1
2.0 HYDROGEOLOGY OF BILLINGS	. 1
3.0 PREVIOUS WORK	. 2
4.0 MDA WATER AND SEDIMENT SAMPLING SUMMARY	. 2
4.1 GROUNDWATER SAMPLING	
 4.2 SURFACE WATER GRAB SAMPLING	
4.4 SEDIMENT SAMPLING	. 9
5.0 ANALYTICAL RESULTS	12
5.1 GROUNDWATER SAMPLING RESULTS - PESTICIDES	
5.2 GROUNDWATER SAMPLING RESULTS – NITRATE	
5.3 SURFACE WATER GRAB SAMPLE RESULTS - PESTICIDES	
5.4 SURFACE WATER GRAB SAMPLE RESULTS – NITRATE	
5.5 SURFACE WATER POCIS RESULTS – PESTICIDES	18
5.6 SEDIMENT SAMPLING RESULTS – PYRETHROID INSECTICIDES	21
6.0 DISCUSSION	25
7.0 SUMMARY	28
8.0 REFERENCES	29

Appendices

APPENDIX A. UNIVERSAL METHOD ANALYTE LIST AND LIMITS OF	
QUANTIFICATION (LOQ)	
APPENDIX B. INDIVIDUAL SAMPLE RESULTS	

1.0 INTRODUCTION

A pesticide is any substance used to destroy, repel, control, or reduce unwanted pests. Common types of pesticides include herbicides, insecticides, fungicides and rodenticides. Although commonly associated with agriculture, approximately 20-25% of all pesticide use is in non-agricultural areas including lawns, gardens, commercial and industrial sites, aquatic areas for mosquito control, rights-of-ways, etc. (Kiely et al, 2004). Because many of these chemicals are mobile in the environment, impacts to groundwater and surface water have become a concern worldwide. Concerns include human health as well as ecological impacts.

In 1989, the Montana Agricultural Chemical Groundwater Protection Act was passed (MCA Title 80, Chapter 15, Sections 80-15-101 through 80-15-414). Section 80-15-103 states that it is the policy of the state to: protect groundwater and the environment from impairment or degradation due to the use of agricultural chemicals including all pesticides and fertilizers, allow for the proper and correct use of agricultural chemicals, provide for the management of agricultural chemicals to prevent, minimize, and mitigate their presence in groundwater, and provide for education and training of agricultural chemical applicators and the general public on groundwater protection, agricultural chemical use, and the use of alternative agricultural chemicals. Under this Act, it is the directive of the Groundwater Protection Program (GWPP) of the Montana Department of Agriculture (MDA) to monitor the occurrence and concentration of agricultural chemicals in the waters of the State of Montana.

During the summer of 2010, the GWPP conducted a monitoring project in residential and urban areas of Billings, Montana. The project included the collection of 32 groundwater samples, 31 surface water samples, and 31 sediment samples. The study was performed in order to determine potential impacts to groundwater and surface water from the use of pesticides and contributions from nitrogen sources (i.e. fertilizer, manure, septic effluent). This was the first large scale monitoring effort to determine impacts from the use of agricultural chemicals to water resources in urban and residential areas of Montana.

2.0 HYDROGEOLOGY OF BILLINGS

The City of Billings is situated on the alluvial valley of the Yellowstone River. The geology underneath the city consists of relatively shallow alluvial (river) deposits from the Yellowstone River underlain by shale bedrock of the late Cretaceous Colorado Group (Olsen, 2005). Since the shale bedrock yields insufficient water, or water of poor quality, the overlying alluvial deposits are generally the sole source of groundwater under Billings.

The alluvial deposits are contained in seven distinct terrace surfaces formed by the erosion and deposition of the Yellowstone River in the Billings area. The Billings urban area is built mostly upon the 2^{nd} and 3^{rd} terraces which lie 20-90 feet above the modern

floodplain. There does not appear to be any hydraulic connectivity between the terrace deposits and the Yellowstone River and its current floodplain (Olsen, 2005).

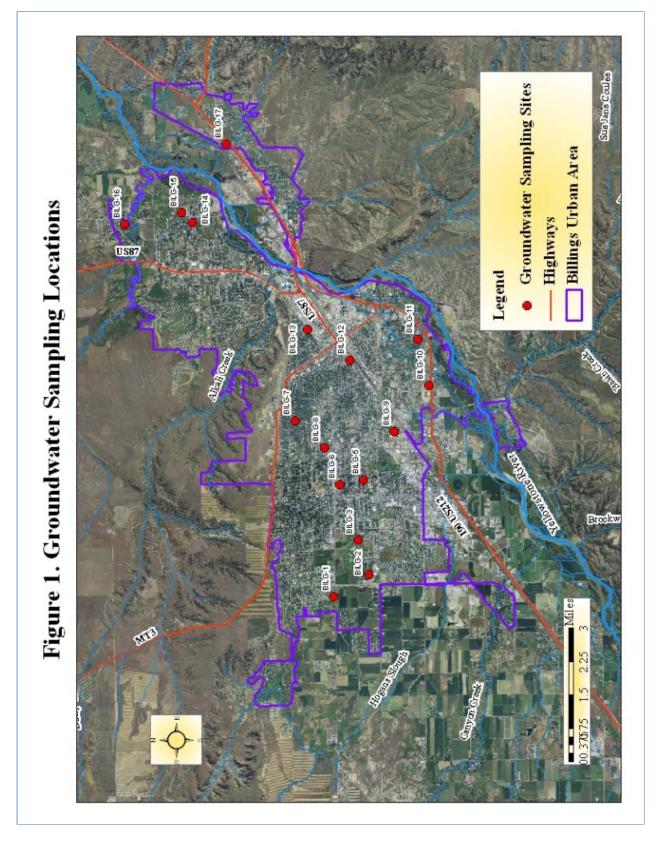
The alluvial deposits generally consist of a basal course-grained unit overlain by a finegrained unit (Olsen, 2005). The coarse-grained unit consists of sand and gravel while the fine-grained unit is made up of silt and clay. Most wells in Billings tap into the saturated sand and gravel unit to obtain water. The sands and gravels can be as thick as 40 feet but are generally in the range of 20 feet. The fine-grained unit can be up to 100 feet thick (generally at the edges of the valley), however, based on driller logs for wells used during this project it is generally 10-20 feet thick with a maximum of 40 feet and a minimum of 5 feet. The upper fine-grained unit can be saturated in places but generally does not yield sufficient water for use.

Groundwater in the alluvial deposits under Billings flows to the east-southeast (Olsen, 2005). Recharge to the aquifer comes from precipitation, irrigation, irrigation canal leakage, and the watering of yards.

3.0 PREVIOUS WORK

This is the first comprehensive study of pesticide impacts to the water resources in the Billings urban area. However, there have been samples collected for nitrate analysis by the Montana Bureau of Mines and Geology (MBMG) as part of their statewide monitoring efforts. The MBMG has collected 12 groundwater samples from 10 wells in the Billings metro area between 1997 and 2007. Five of these wells were also sampled by the MDA during the present project.

MBMG nitrate concentrations ranged from non-detect to 20.1 mg/L. The median nitrate concentration was 5.3 mg/L. Only one sample, collected in 1997 on the southern edge of Billings, exceeded the drinking water standard of 10 mg/L. Subsequent samples from the same well in 2007 and two in 2010 had nitrate concentrations of 9.2, 7.2, and 6.5 mg/L, respectively.

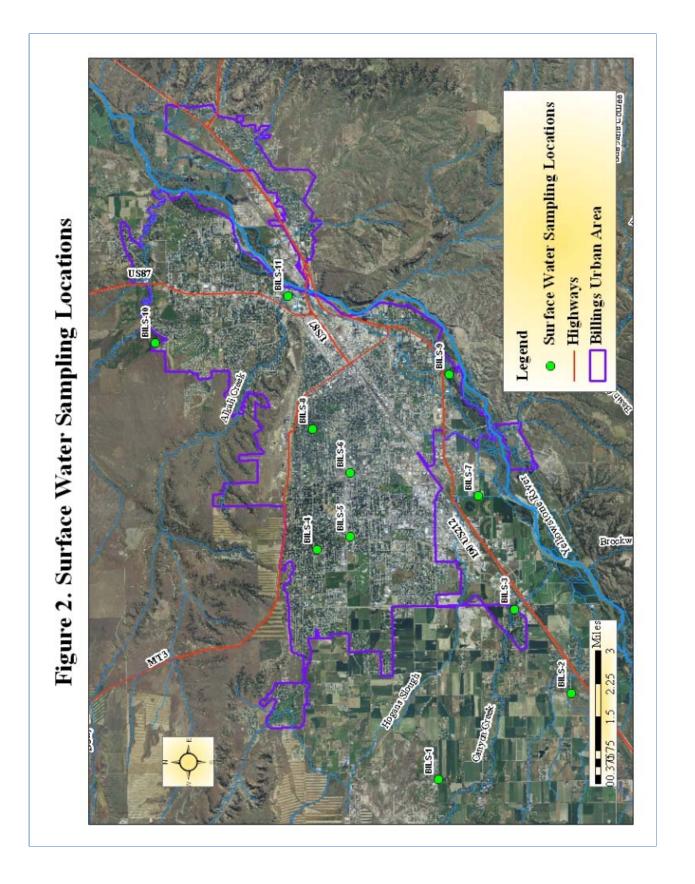

4.0 MDA WATER AND SEDIMENT SAMPLING SUMMARY

4.1 Groundwater Sampling

Between May 31 and June 2, 2010, the MDA collected groundwater samples from 17 wells. On August 31–September 2, 2010, samples were collected from 15 wells. Two wells sampled in June were not sampled in September because of access issues. In sampled wells, the mean depth of well screens below the ground surface was 21 feet and mean total depth was 27 feet (Table 1). All wells were completed in the shallow alluvial aquifer. Sampling locations were chosen to optimize geographic distribution in the Billings metro area (Figure 1).

All wells were sampled after purging at least three well casing volumes and/or after field parameters (temperature, pH, specific conductivity, and dissolved oxygen) had stabilized. MDA utilized standard operating procedures (SOPs) for groundwater collection, storage, and transportation.

Table 1. Well Information for Groundwater Sampling Sites								
Site ID	Water use	Total Depth (ft bgs)	Screened Interval (ft bgs)	Water Level (ft bgs)				
BILG-1	D	58	Open bottom	13				
BILG-2	D	40	34-39	8				
BILG-3	Ι	27	Unknown	10				
BILG-4	D	25	Unknown	13				
BILG-5	Ι	25	20-25	12				
BILG-6	Ι	26	21-26	12				
BILG-7	Ι	46.5	Open bottom	25				
BILG-8	Ι	21	16-21	12				
BILG-9	Ι	33	26-31	12				
BILG-10	Ι	26	21-26	13				
BILG-11	Ι	23	13-23	8				
BILG-12	Ι	28	Open bottom	Unknown				
BILG-13	Ι	31	20-25	13				
BILG-14	Ι	27	18-27	17				
BILG-15	Ι	22	17-21	10				
BILG-16	Ι	20	Open bottom	11				
BILG-17	Ι	57	Open bottom	23				



4.2 Surface Water Grab Sampling

The MDA collected surface water grab samples from 11 locations during the summer of 2010 (Figure 2). A range of surface water sites were selected to compliment groundwater sampling efforts. Irrigation canals that flow through Billings were sampled above city limits, within city limits, and below city limits. Creeks and drains that receive storm water from the City of Billings were also sampled. These creeks and drains empty into the Yellowstone River. Surface water sites included: the Billings Bench Water Association (BBWA) canal, the Big Ditch Company canal, Spring Creek, Canyon Creek, Hogans Slough, City-County Drain, and Alkali Creek (Table 2). Spring Creek is a natural drainage which receives irrigation canal overflows and storm water discharges and empties into the City-County Drain. Canyon Creek is a natural stream, however, it receives irrigation return flow, irrigation canal overflows, and storm sewer discharges. Both Hogans Slough and City-County Drain are artificial drains for groundwater discharges, irrigation canal overflows, and storm water discharges. Alkali Creek is a naturally occurring creek which receives storm water discharges.

Streams, drains, and canals were sampled using both vertical and horizontal integration techniques unless flow conditions did not allow for safe wading. If wading was unsafe, grab samples were obtained from flowing water by reaching out from the stream or canal bank or by wading into safe areas of the stream. Discharge measurements were collected when conditions allowed. Due to high flow conditions, discharge was not measured at Canyon Creek during any of the sampling events, and at Alkali Creek during the June 17 sampling. No discharge was measured at City-County Drain on June 1 because of equipment malfunction. Because of the depth of the BBWA canal no discharge measurements were made at any of the sites on the canal. MDA utilized standard operating procedures (SOPs) for surface water collection, storage, transportation, and discharge measurements.

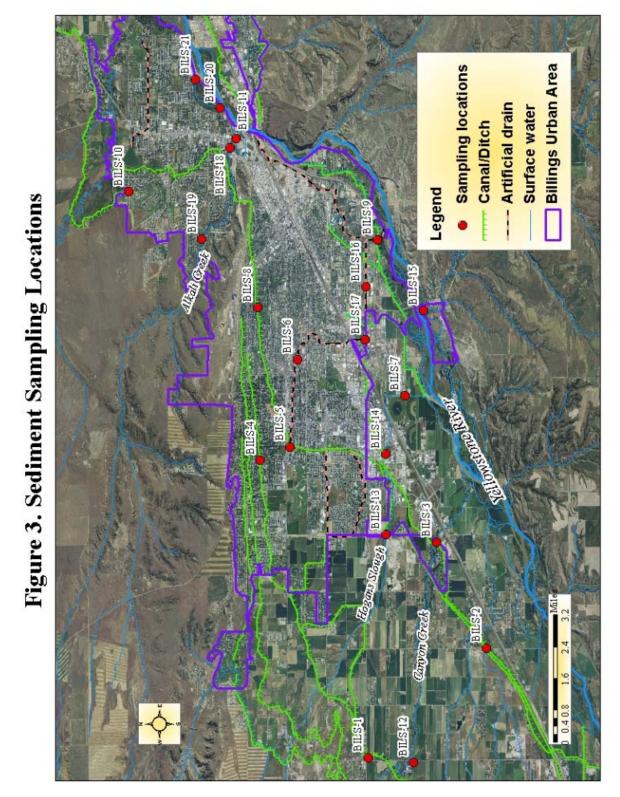
Both surface water and groundwater samples were collected in 900-mL amber glass jars and 25-mL nalgene bottles, put on ice, and transported to the MDA Analytical Laboratory Bureau at Montana State University in Bozeman. The samples were analyzed using the "Montana Universal Method" (MT UM), an analytical method developed by the MDA Analytical Bureau for the detection of pesticides in water. The MT UM is a polar multi-residue method which analyzes for 93 pesticides and pesticide degradates. In addition to the MT UM, samples were analyzed for the herbicide glyphosate and its degradate AMPA. The MDA lab also performed all nitrate analyses. A list of analytes and their respective limits of quantification is included in Appendix A.

	Table 2. Surface Water Site Inf	formation	
Site ID	Location description	Date	Discharge (cfs)
BILS-1	BDC Canal at King Ave and S 72 nd St W	6/2/10	22.4
BILS-1	BDC Canal at King Ave and 5 /2 St w	9/2/10	24.4
		6/2/10	NM
BILS-2	BBWA Canal at S 56 th St W and Danford Rd	9/1/10	NM
		6/1/10	NM
	Commun Crash at Nisiharan David	7/14/10	NM
BILS-3	Canyon Creek at Neibauer Road	9/1/10	NM
	Γ	9/27/10	NM
BILS-4	DDC Canal at Dakkara Lana south of Daky Dr	6/2/10	4.8
BILS-4	BDC Canal at Rehberg Lane south of Poly Dr	9/2/10	3.1
BILS-5	BBWA Canal at Parkview Dr and Lillis Ln	6/2/10	NM
DILS-3	BBWA Canal at Parkview DI and Linis Li	9/1/10	NM
BILS-6	Spring Creek at Lewis Ave and 15 th St W	6/2/10	1.4
	Spring Creek at Lewis Ave and 15 St w	9/2/10	1.5
		6/1/10	48.8
BILS-7	Hogong Slough at Eluzion Dood	7/14/10	NM
DILS-/	Hogans Slough at Elysian Road	9/1/10	49.8
		9/28/10	42.2
BILS-8	DDWA Conclust Doly Dr cost of Highwood Dr	6/2/10	NM
DILS-0	BBWA Canal at Poly Dr east of Highwood Dr	9/1/10	NM
		6/1/10	NM
BILS-9	City County Drain at L00 Frontage Bood	7/13/10	21.7
BILS-9	City-County Drain at I-90 Frontage Road	9/1/10	16.5
	Γ	9/27/10	12.9
BILS-10	BBWA Canal at Annandale Rd and	6/2/10	NM
DILS-10	Greenbriar Rd	9/1/10	NM
		6/1/10	1.6
	l T	6/17/10	NM
BILS-11	Alkali Creek east of Metra Park	7/13/10	1.7
		9/1/10	4.4
	Γ	9/27/10	1.6

4.3 Surface Water Passive Sampling

In addition to surface water grab samples, Polar Organic Contaminant Integrative Samplers (POCIS) were deployed in four streams and drains in the Billings area. The streams and drains included Canyon Creek, Hogans Slough, City-County Drain, and Alkali Creek (sites BILS-3, BILS-7, BILS-9, and BILS-11 on Figure 2). POCIS are passive samplers left in streams for several weeks up to several months and are used to mimic aquatic respiration. If experiments have been performed to determine the sampling rate for individual chemicals the POCIS data can be used to calculate a time-weighted average water concentration. The use of POCIS has been detailed in Alvarez et al, 2004, and Alvarez et al, 2005.

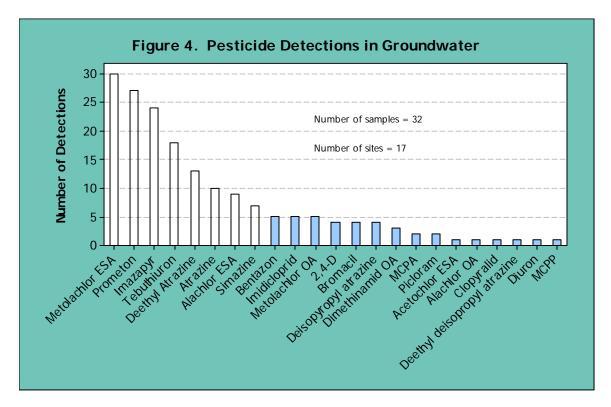
Two POCIS per site were placed in stainless steel cages, tied to cement cinder blocks, and placed in the streams and drains from June 1 through July 14, 2010, and again from September 1 through September 27, 2010. The POCIS placed in Alkali Creek during June was washed away by heavy rains and flash floods on June 20 and was not recovered for analysis. The POCIS in City-County Drain during June was buried by a silty sand sediment when retrieved. The POCIS cage in Hogans Slough during June was filled with mud. Upon retrieval, POCIS were taken to the MDA analytical laboratory and analyzed using the 2008 MT UM, which has a slightly different analyte list then the 2010 MT UM. The 2008 MT UM was used because that is when sampling rate experiments were performed on the POCIS. Grab samples were collected from the streams when the POCIS were deployed and again when retrieved. These samples were analyzed using the 2010 MT UM.


POCIS device ready for deployment

4.4 Sediment Sampling

Sediment samples were collected for pyrethroid analyses in June, September, and November, 2010 (Table 3; Figure 3). Samples were collected at several locations along 2 irrigation canal networks (Big Ditch Company, Billings Bench Water Association) and along multiple, interconnected natural and man-made drainage networks in and around the City of Billings including Canyon Creek, Hogans Slough, City/County Drain and Alkali Creek. It is worth noting that there was a significant storm event on June 20, 2010, after the June sediment sampling. This storm event likely produced significant redistribution of sediments within the creeks and drains.

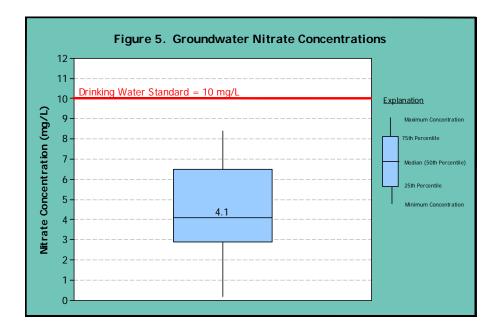
Table 3. Sediment Sample Site Information									
Site ID ^a	Name	Location description	June 1 st - 2 nd	September 1 st - 2 nd	November 15 th				
BILS-1	High Ditch	King Ave W and S 72nd St W	Х						
BILS-2	BBWA	S 56th St W and Danford Rd	Х		Х				
BILS-3	Canyon Creek	Neibauer Rd	Х		Х				
BILS-4	High Ditch	Rehberg Ln south of Poly Dr	Х	Х					
BILS-5	BBWA	Parkview Dr and Lillis Ln	Х						
BILS-6	Spring Creek	Park at Lewis Ave and 15th St W	Х		Х				
BILS-7	Hogan's Slough	Elysian Rd crossing	Х	Х	Х				
BILS-8	BBWA	Poly Dr east of Highwood Dr	Х	Х					
BILS-9	City/County Drain	S of I90 Frontage Rd	Х		Х				
BILS-10	BBWA	Annandale Rd and Greenbriar Rd	Х	Х					
BILS-11	Alkali Creek	in city park east of Metra Park	Х		Х				
BILS-12	Canyon Creek	72nd Street crossing			Х				
BILS-13	Hogan's Slough	40th Street crossing			Х				
BILS-14	Hogan's Slough	26th Street crossing			Х				
BILS-15	Blue Creek	N of Jellison Rd			Х				
BILS-16	City/County Drain	King Ave E and Orchard Lane			Х				
BILS-17	City/County Drain	King Ave E and Nimitz Dr			Х				
BILS-18	Alkali Creek	HWY 10W crossing			Х				
BILS-19	Alkali Creek	Senators Rd crossing			Х				
BILS-20	Hilltop Drain	S end of Two Moon Park			Х				
BILS-21	Two Moon Park	S of Yellowstone R. Rd			Х				
	l sampling location: f June sediment san	s for September and November we	ere made i	n response to	o the				


Pyrethroids are largely insoluble, non-persistent chemicals, and are relatively immobile in the environment. They have high adsorption coefficients and bind tightly to the organic fractions in soils and sediment and have low risk of leaching to groundwater. Bound to soil particles, pyrethroids are prone to off-site transportation and deposition in surface waters following a precipitation or irrigation event. Pyrethroids primarily sorb to organic matter and colloidal particles. Therefore, samples were preferentially collected from recently deposited fine sediments and organic matter. Two sampling environments were encountered during this project: slow stream flow with a soft bottom (type 1); slow stream flow with primarily coarse bottom material covered with filamentous algae and a thin layer of fine material (type 2). Different sample collection techniques were used for each environment. For type 1 environments, a trowel was used to remove the upper sediment layer (0.5 inches or less). For type 2 environments, latex gloved hands were used to collect sediment from algae and cobble surfaces. All subsamples were placed into a clean stainless steel bucket and homogenized before being transported in glass sample bottles. Pyrethroid analyses were performed by the Water Pollution Control Laboratory of the California Department of Fish and Game in Rancho Cordova, CA. Total organic carbon (TOC) analyses were completed by Energy Labs in Helena, MT.

5.0 ANALYTICAL RESULTS

5.1 Groundwater Sampling Results - Pesticides

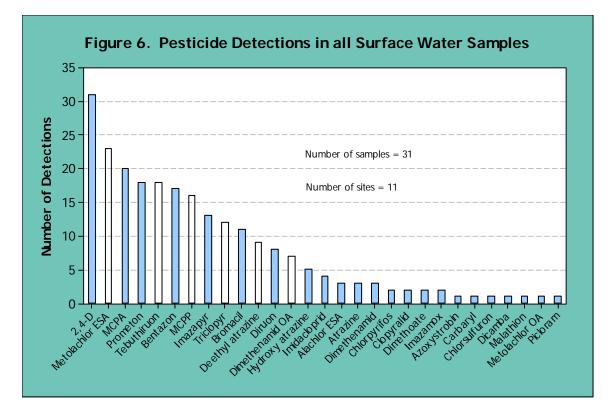
There were a total of 179 detections of 23 pesticides and pesticide degradates observed in 32 groundwater samples (Figure 4). Of the 179 detections, 82 were below the analytical method reporting limits and were not quantified. All of the groundwater samples contained at least one pesticide compound. On average, samples contained 5.6 pesticides per sample with a range of 1-10 pesticides per sample. Most significantly, no single pesticide detection exceeded or approached the human health standard (HHS) for drinking water (Table 4). Individual results for the samples are presented in Appendix B.

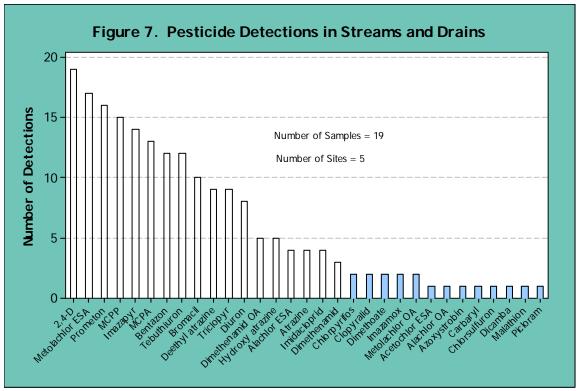


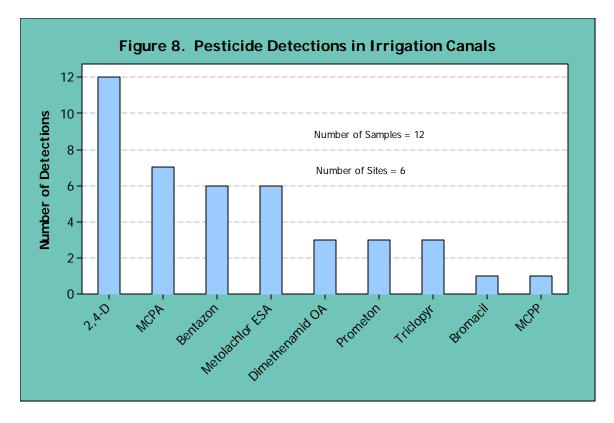
Of the 23 pesticide compounds detected, 22 were herbicides and one was an insecticide (imidacloprid). The most common detection in groundwater was metolachlor ESA, a degradate of metolachlor, an herbicide used in corn, potato, and nursery crops. The next three most common detections, prometon, imazapyr, and tebuthiuron, are all herbicides used in non-crop areas. Atrazine and alachlor are herbicides used in corn crops, while simazine is an herbicide that can be used in corn crops, but can be used at higher application rates as a soil sterilant in non-crop areas. The remaining pesticides all had five or fewer detections.

		Number	Sur	nmary of Detection	ons	Human	
Pesticide Compound	Number of Samples	of Detections (percent of samples)	Minimum Concentration (μg/L)	Median Concentration (μg/L)	Maximum Concentration (μg/L)	Health Standard fo Drinking Water (μg/L)	
2,4-D	32	4 (13)	<0.0045		<0.0045	70	
Acetachlor ESA	32	1 (3)			0.01	140	
Alachlor ESA	32	9 (28)	<0.011	0.043	0.12	2*	
Alachlor OA	32	1 (3)			<0.0034	2*	
Atrazine	32	10 (31)	<0.0022	0.0025	0.0076	3*	
Bentazon	32	5 (16)	<0.0011		<0.0011	200	
Bromacil	32	4 (13)	0.0074	1.32	2.3	90	
Clopyralid	32	1 (3)			<0.022	3,500	
Deethyl deisopropyl atrazine	32	1 (3)			<0.5	3*	
Deethyl atrazine	32	13 (41)	<0.0017	0.0036	0.024	3*	
Deisopropal atrazine	32	4 (13)			<0.01	3*	
Dimethenamid OA	32	3 (9)	<0.0038	0.004	0.0041	400	
Diruon	32	1 (3)			<0.01	10	
Imazapry	32	24 (75)	<0.011	0.029	4.7	21,000	
Imidacloprid	32	5 (16)	0.0024	0.066	0.29	400	
МСРА	32	2 (6)	<0.0023	0.003	0.0044	4	
МСРР	32	1 (3)			0.0041	7	
Metolachlor ESA	32	30 (94)	<0.0025	0.0025	0.18	100*	
Metolachlor OA	32	4 (13)	<0.021		<0.021	100*	
Picloram	32	2 (6)	<0.14		<0.14	500	
Prometon	32	27 (84)	<0.0051	0.0195	0.34	100	
Simazine	32	7 (22)	<0.0026	0.0026	0.0049	4	
Tebuthiruon	32	18 (56)	<0.0011	0.0033	0.17	500	

5.2 Groundwater Sampling Results – Nitrate

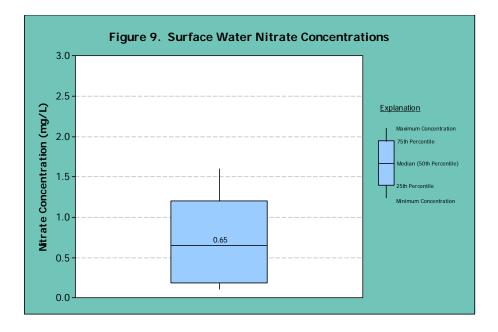

Nitrate was detected in 31 of 32 groundwater samples collected. Concentrations ranged from non-detect (ND) to 8.4 mg/L, with a weighted mean concentration of 4.1 mg/L (Figure 5). None of the nitrate concentrations exceeded the HHS for drinking water of 10 mg/L.




5.3 Surface Water Grab Sample Results - Pesticides

There were a total of 229 detections of 29 different pesticides and pesticide degradates in 31 surface water samples (Figure 6). Of the 229 detections, 89 were below the analytical method reporting limit and were not quantified. All of the surface water samples contained at least two pesticide compounds. On average, samples contained 7.4 pesticides per sample with a range of 2-18 pesticides per sample. In general, pesticides were detected more frequently in the creeks and drains then in the irrigation canals (Figures 7 and 8). None of the pesticide concentrations exceeded or approached the HHS for drinking water (Table 5). In addition, there were no exceedances of EPA aquatic life benchmarks (Table 5). Individual results for the surface water samples are presented in Appendix B.

There was a single incident where a pesticide concentration approached an aquatic life benchmark. On June 1, 2010, diruon was found at a concentration of 1.3 μ g/L in Alkali Creek (site ID = BILS-11), which is >50% of the acute aquatic life benchmark for non-vascular plants of 2.4 μ g/L. A sample collected on June 17, 2010, to verify the diuron detection, contained a low concentration which did not approach the aquatic life benchmark. Two subsequent samples in Alkali Creek in July and early September also contained low concentrations of diruon. A sample collected in late September had no detection of diuron.



Of the 29 pesticide compounds detected, 23 were herbicides, five were insecticides (imidacloprid, chlorpyrifos, dimethoate, carbaryl, and malathion), and one was a fungicide (azoxystrobin). The herbicide 2,4-D was detected in every surface water sample collected. 2,4-D has many uses including in cereal crops, corn, pastures, rangeland, CRP lands, and in aquatic situations. It is also commonly used around homes in lawn and garden settings. 2,4-D also had the highest concentration in surface water with a detection of 11 µg/L in Alkali Creek on June 17, 2010. Metolachlor ESA is a degradate of metolachlor, an herbicide used in corn, potatoes, and nursery crops. MCPA is an herbicide similar to 2,4-D and is used in cereal crops, pastures, rangeland, and turf. Prometon, tebuthiuron, imazapyr, triclopyr, bromacil, and diuron, are all herbicides used in non-crop settings. All of these herbicides, with the exception of tebuthiuron, are used as soil sterilants, i.e., used in areas were long term weed and vegetation control is desired. Bentazon is an herbicide used in dry beans, peas, and corn. MCPP is used in turf and cereal crops. Deethyl atrazine and hydroxy atrazine are both degradates of atrazine, an herbicide used in corn crops. The remaining pesticides all had four or less detections.

			Summary of Detections						EPA Auatic Life	Benchmarks		
Pesticide Compound	Number of Samples	Number of Detections (percent of samples)	Minimum	Median Concentration (µg/L)	Maximum	Human Health Drinking Water Standard (µg/L)	Acute Fish (µg/L)	Chronic Fish (μg/L)	Acute Invertabrates (µg/L)	Chronic	Acute Non- Vascular Plants (μg/L)	Acute Vascula Plants (μg/L)
2,4-D	31	31 (100)	<0.0045	0.018	11	70	-			-	-	
Alachlor ESA	31	3 (10)	<0.011	-	<0.011	140	52,000		52,000	-	-	-
Atrazine	31	3 (10)	<0.0022	-	<0.0022	3*	2,650	65	360	60	1	37
Azoxystrobin	31	1 (3)	-	-	0.0056	1,000	235	147	130	44	49	3,400
Bentazon	31	17 (55)	<0.0011	0.0012	0.19	200	>50,000	-	>50,000		4,500	5,350
Bromacil	31	11 (35)	<0.0074	0.017	0.069	90	18,000	3,000	60,500	8,200	6.8	45
Carbaryl	31	1 (3)	-	-	<0.04	700	110	6.8	0.85	0.5	660	1,500
Chlorpyrifos	31	2 (6)	<0.031	-	<0.031	20	0.9	0.57	0.05	0.04	140	-
Chlorsulfuron	31	1 (3)	-	-	0.0066	1,750	-			-	-	
Clopyralid	31	2 (6)	<0.022	-	<0.022	3,500	984,000	-	56,500	-	-	-
Deethyl atrazine	31	9 (29)	<0.0017	-	<0.0017	3*	-			-	-	
Dicamba	31	1 (3)	-	-	2.7	200	14,000	-	17,300		61	>3,250,00
Dimethenamid	31	3 (10)	0.069	0.076	0.092	400*	3,150	300	6,000	1,020	14	8.9
Dimethenamid OA	31	7 (23)	<0.0038	0.0038	0.013	400*		-			-	-
Dimethoate	31	2 (6)	<0.0011	-	0.0012		3,100	430	21.5	0.5	84	-
Diruon	31	8 (26)	<0.01	0.011	1.3	10	200	26	80	200	2.4	15
Hydroxy atrazine	31	5 (16)	<0.0064	-	<0.0064	70		-	-		-	-
Imazamox	31	2 (6)	<0.012	-	0.033	20,00	>59,500	-	>61,000		>40	11
Imazapry	31	13 (42)	<0.011	0.024	0.16	21,000	>50,000	43,100	50,000	97,100	11,500	18
Imidacloprid	31	4 (13)	0.0024	0.006	0.0083	400	>41,500	1,200	35	1.05	>10,000	-
Malathion	31	1 (3)	-	-	<0.028	100	16.4	8.6	0.3	0.035	2,400	-
MCPA	31	20 (65)	<0.0023	0.007	0.055	4		-			300	170
МСРР	31	16 (52)	<0.0022	0.006	0.1	7		-	>45500	50,800	-	-
Metolachlor ESA	31	23 (74)	<0.0025	0.004	0.032	100*	24,000	-	>54,000		>99,450	>95,100
Metolachlor OA	31	1 (3)	-	-	<0.021	100*	>46,550	-	7,700		57,100	>95,100
Picloram	31	1 (3)	-	-	<0.14	500	6,500	550	34,150	11,800	4,900	-
Prometon	31	18 (58)	<0.0051	0.008	0.17	100	6,000	9,500	12,850	3,500	98	624
Tebuthiruon	31	11 (36)	<0.0011	0.002	0.004	500	53,000	9,300	148,500	21,800	50	135
Triclopyr	31	12 (39)	<0.011	0.011	0.071	350	180	104,000	850	80,700	100	880

5.4 Surface Water Grab Sample Results – Nitrate

Nitrate was detected in 23 of 30 surface water samples. No nitrate analysis was performed on the diruon verification sample collected from Alkali Creek on June 17, 2010. Concentrations of nitrate in surface waters were all below 1.6 mg/L and none of the samples exceeded the HHS for drinking water of 10 mg/L (Figure 9).

5.5 Surface Water POCIS Results – Pesticides

An average of 22 pesticide compounds were detected in the POCIS (Table 6). The lowest number detected was 18 pesticides in Canyon Creek in September and the highest number detected was 26 in City-County Drain in June/July. All of the sites had slightly more detections in the June/July sampling then in the September sampling.

An average of 10 pesticide compounds per sample were detected in the grab samples collected when POCIS were deployed and retrieved, compared to an average of 22 in the POCIS (Table 6). This indicates that the presence of some pesticides were either episodic or the concentrations of the pesticides were too low to be detected in the grab samples. In addition, a couple of pesticides were detected in the grab samples but not in the POCIS (Table 6). This likely indicates that the POCIS were not able to sequester these chemicals or that the pesticides were in the water only briefly at the time of the grab sample and were not present long enough to be detected in the POCIS.

The amount of pesticides detected in the POCIS is not presented in this report because the data could be misinterpreted as a water concentration. The POCIS data only indicate how much pesticide was sequestered during the deployment period. This data can then be used to calculate a time-weighted average (TWA) water concentration using the following formula:

$$C_{TWA} = M_{ACC}/R_s t$$

Where: C_{TWA} = time weighted average concentration M_{ACC} = mass accumulated on the POCIS in ng/POCIS R_s = sampling rate in L/day determined through laboratory experiments t = time of deployment in days TWA concentrations are better data to use when determining potential chronic impacts to aquatic life. Grab samples only provide a snapshot of pesticide concentrations at the time of sampling. Since pesticide concentrations are likely transient, the use of grab sample concentrations for the determination of aquatic life impacts could over or under estimate the impacts occurring. Because the POCIS provide an average concentration over the time of deployment these data are more toxicologically relevant.

TWA water concentrations calculated using POCIS data are presented in Table 7. When sampling rate experiments were performed by the MDA Analytical Bureau, 54 of 95 pesticides did not show linear uptake over time, which is required to determine a sampling rate. In addition, many of the detections in the POCIS were below the analytical method reporting limit and not quantified. Therefore, a TWA water concentration could not be determined for many of the pesticides detected in the POCIS. If the calculated TWA water concentration was below 0.0001 μ g/L, the pesticide was considered to be not detected. The 0.0001 μ g/L cutoff is an arbitrary number used to censor ultra-low level detections which likely have no toxicological significance.

	Table 6. Pesticides Detected in POCIS										
Canyon Creek (BILS-3) June	Canyon Creek (BILS-3) September	Hogans Slough (BILS-7) June	Hogans Slough (BILS-7) September	City-County Drain (BILS-9) June	City-County Drain (BILS-9) September	Alkali Creek (BILS-11) September					
2,4-D	2,4-D	2,4-D	2,4-D	2,4-D	2,4-D	2,4-D					
Alachlor ESA	Alachlor ESA	Alachlor ESA	Alachlor ESA	Alachlor ESA	Alachlor ESA	Alachlor ESA					
Atrazine	Atrazine	Atrazine	Atrazine	Aldicarb sulfone	Atrazine	Atrazine					
Bentazon	Bentazon	Azoxystrobin	Bentazon	Atrazine	Bentazon	Bentazon					
Deethyl atrazine	Chlorsulfuron	Bentazon	Bromacil	Azoxystrobin	Bromacil	Bromacil					
Dimethenamid	Deethyl atrazine	Bromacil	Deethyl atrazine	Bentazon	Chlorsulfuron	Carbaryl					
Dimethoate	Dimethenamid	Carbaryl	Dimethenamid	Bromacil	Deethyl atrazine	Chlorsulfuron					
Diuron	Diuron	Deethyl atrazine	Diuron	Carbaryl	Deisopropyl atrazine	Deethyl atrazine					
Hexazinone	Hexazinone	Dimethenamid	Hydroxy atrazine	Chlorsulfuron	Dimethenamid	Diuron					
Hydroxy atrazine	Hydroxy atrazine	Dimethenamid OA	Imidacloprid	Deethyl atrazine	Diuron	Hydroxy atrazine					
Imazamethabenz	Imazamethabenz	Dimethoate	MCPA	Dimethenamid	Hexazinone	Imidacloprid					
Malathion	MCPA	Diuron	MCPP	Dimethoate	Hydroxy atrazine	MCPA					
MCPA	MCPP	Hydroxy atrazine	Metolachlor	Diuron	Imidacloprid	MCPP					
Metolachlor	Metolachlor	Imidacloprid	Metolachlor ESA	Hydroxy atrazine	Malathion	Metolachlor ESA					
Metolachlor ESA	Metolachlor ESA	Malathion	Metolachlor OA	Imidacloprid	MCPA	Prometon					
Prometon	Prometon	MCPA	Prometon	Malathion	MCPP	Propiconazole					
Simazine	Simazine	MCPP	Propiconazole	MCPA	Metolachlor ESA	Simazine					
Tebuthiuron	Tebuthiuron	Metolachlor ESA	Simazine	MCPP	Metolachlor OA	Tebuconazole					
Triclopyr		NOA 447204	Tebuconazole	Metalaxyl	Prometon	Tebuthiuron					
		Prometon	Tebuthiuron	Metolachlor ESA	Propiconazole	Triclopyr					
		Propiconazole	Triclopyr	Prometon	Simazine						
		Simazine		Propiconazole	Tebuconazole						
		Tebuconazole		Simazine	Tebuthiuron						
		Tebuthiuron		Tebuconazole	Triclopyr						
		Triclopyr		Tebuthiuron							
				Triclopyr							
Pesticides in red w	ere detected in POC	CIS but not in grab sa	amples	•	•	·					
	Pesticides Detected in Grab Samples but not in POCIS										
Chlorpyrifos	Triclopyr	Chlopyralid	Dimethenamid OA	Imazapyr	Dimethenamid OA	Imazapyr					
Dimethenamid OA		Imazamox	Imazapyr		Clopyralid						
					Imazapyr						

Table 7. Surface Water Grab Sample and TWA Concentrations from POCIS								
Canyon Creek (BILS-3)								
			June/July					
	6/1/10	7/14/10	TWA		9/27/10	Sept. TWA		
	Grab	Grab	Concentration	9/1/10 Grab	Grab	Concentration		
	Sample	Sample	from POCIS	Sample	Sample	from POCIS		
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
2,4-D	0.011	0.024	0.0048	0.011	< 0.0045	0.008		
Atrazine Dimethenamid	ND ND	ND 0.076	0.0001	ND ND	ND ND	0.0003 ND		
Malathion	ND	<u>0.078</u> ND	0.002	ND	ND ND	ND		
Prometon	ND	ND	0.0014	ND	ND	ND		
		Hogan	s Slough (BIL	S-7)				
			June/July					
	6/1/10	7/14/10	TWA		9/27/10	Sept. TWA		
	Grab	Grab	Concentration	9/1/10 Grab	Grab	Concentration		
	Sample	Sample	from POCIS	Sample	Sample	from POCIS		
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
2,4-D	0.018	0.24	0.215	0.12	0.019	0.092		
Atrazine	ND	ND	ND	ND	ND	0.0003		
Dimethenamid	ND	0.092	0.0004	ND	ND	0.0004		
Diuron	ND	ND	0.066	< 0.01	ND	0.0011		
Imidacloprid MCPA	ND 0.012	ND	ND 0.15	ND 0.002	ND	0.0005		
MCPA MCPP	0.012	0.0031 0.039	0.15	0.003 0.0031	ND <0.0022	0.059 0.0008		
Prometon	<0.0022	<0.0051	0.001	0.0031	<0.0022	0.0008		
Tebuthiuron	ND	<u>ND</u>	0.0027 ND	< 0.0011	<0.0011	0.00024		
			unty Drain (BI					
			June/July					
	6/1/10	7/14/10	TWA		9/27/10	Sept. TWA		
	Grab	Grab	Concentration	9/1/10 Grab	Grab	Concentration		
	Sample	Sample	from POCIS	Sample	Sample	from POCIS		
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
2,4-D	0.038	0.33	0.082	0.56	0.025	0.784		
Atrazine	ND	< 0.0022	0.0005	ND	ND	0.0004		
Bromacil	ND	0.0092	0.064	0.017	0.022	0.02		
Dimethenamid	ND	0.069	0.004	ND	ND	0.0044		
Diuron	< 0.01	< 0.01	0.074	0.036	ND	0.0098		
Imidaeloprid	ND	ND	0.004	ND	ND	0.0016		
Malathion MCPA	ND 0.0081	ND 0.024	0.011	<0.028 0.055	ND ND	0.0018 0.0192		
MCPA	0.0054	0.024	0.004	0.033	0.0056	0.0302		
Prometon	0.019	0.0054	0.04	0.021	0.0088	0.0093		
Propaconazole	ND	ND	0.0005	ND	ND	0.0008		
Simazine	ND	ND	0.0004	ND	ND	ND		
Tebuthiuron	0.0018	0.0016	0.0016	0.0018	0.0029	0.003		
Triclopyr	< 0.011	0.034	0.0082	< 0.011	ND	0.0027		
		Alkali	Creek (BILS-	-11)				
	6/1/10	6/17/10	7/14/10	9/1/10	9/27/10	Sept. TWA		
	Grab	Grab	Grab	Grab	Grab	Concentration		
	Sample	Sample	Sample	Sample	Sample	from POCIS		
Analyte	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)		
2,4-D	0.047	11	0.79	0.28	0.0047	0.077		
Atrazine	ND	<0.0022	< 0.0022	ND	< 0.0022	0.0003		
Bromacil	0.047	0.039	0.012	0.024	0.069	0.044		
Chlorsulfuron Diuron	ND 1.3	0.0066	ND <0.01	ND 0.011	ND ND	0.0009 0.0012		
Diuron Imidacloprid	0.0032	0.063	<0.01 ND	ND	ND 0.0083	0.0012		
MCPA	0.0052	0.041	0.054	0.013	ND	0.0023		
MCPP	0.009	0.033	0.056	0.054	0.0045	0.002		
Prometon	0.012	0.035	0.012	0.018	0.015	0.0069		
Tebuthiuron	< 0.0011	0.004	0.0013	0.0014	0.0015	0.0012		
Triclopyr	ND	< 0.011	< 0.011	< 0.011	ND	0.003		
TWA = Time weig	tted average							

5.6 Sediment Sampling Results – Pyrethroid Insecticides

From the three sampling events in Billings in 2010, there were 80 detections of 8 different pyrethroids in 30 sediment samples. Samples had a mean of 2.67 pyrethroid detections per sample. Pyrethroids detected included: bifenthrin, cyfluthrin,

 λ -cyhalothrin, cypermethrin, fenpropathrin, permethrin (*cis*- and *trans*-), allethrin and prallethrin. Bifenthrin and the *cis*- and *trans*- isomers of permethrin comprised 75% of all detections.

Pyrethroid detections were OC-normalized using the results of the TOC analysis. As TOC increases, bioavailability decreases. To assess *H. azteca* toxicities for individual pyrethroid detections, concentrations were divided by the decimal value of TOC per respective sampling location per date. This calculation is expressed in the following formula.

$$ng/g OC = \frac{ng/g dry weight}{ng TOC/g dry weight}$$

OC-normalized pyrethroid concentrations were then divided by published *H. azteca* sediment toxicities for selected pyrethroids in order to calculate toxic units (TUs) per sediment sample (Maund et al, 2002; Amweg et al, 2005; Ding et al, 2009). This is expressed in the following formula.

Actual concentration (organic carbon-normalized)

Toxic Unit (TU) =

Reported H. azteca LC₅₀ concentration (organic carbon-normalized)

Toxic units were summed by location and sampling date to provide a total toxic unit recognizing the established additive effect of exposure to multiple pyrethroids. TUs had a range of 0.00 - 1.80 TUs with a mean of 0.32 TUs for all samples collected in 2010. Amweg et al. (2006) determined that a critical threshold existed at 0.4 TUs although more recent studies have used a threshold of 1 TU to ascertain significant mortality to aquatic invertebrates (Hintzen et al., 2009; Weston and Lydy, 2010). The mean TOC for canal/ditch sites and stream/drains was 0.96% and 1.27% respectively. Employing a simple *t*-test, the two populations were not significantly different at $\alpha = 0.05$ (95% CI). For all samples, the mean TOC was 1.19% with a range of 0.21% - 3.97%.

Where detected, bifenthrin accounted for $\sim 72\%$ of sample toxicity while permethrin accounted for $\sim 33\%$ of sample toxicity. Detections of bifenthrin and permethrin isomers were nearly identical but bifenthrin has significantly greater toxicity. Reporting limits, detection frequency and published LC₅₀ data used in the Toxic Unit analysis may be

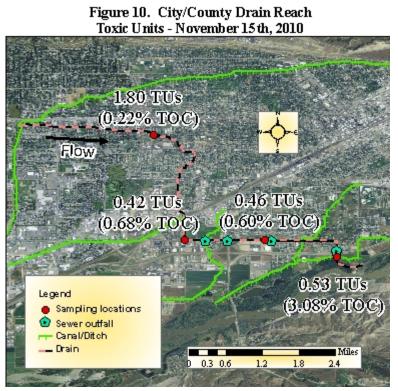
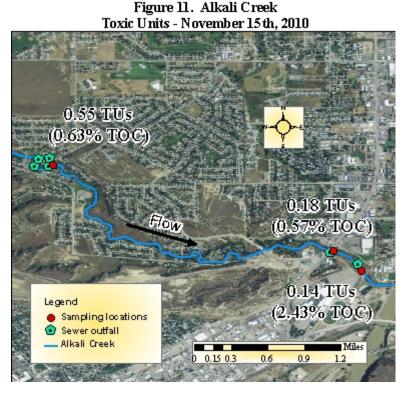

found in Table 8. The most frequently detected pyrethroids include bifenthrin and *cis*and *trans*- isomers of permethrin. Allethrin and prallethrin were also detected in sediment but no toxicity data exists for these compounds and they were not included in the TU analysis.

Table 8. Reporting limits (RL), detection frequency, mean, maximum and LC ₅₀ s									
Pyrethroid insecticide	RL (µg/g)	Detection frequency (%)	Mean (µg/g)	Max (µg/g)	LC ₅₀ ^a				
Bifenthrin	0.00002	63.3	0.09	0.38	0.52 ^b				
Cyfluthrin	0.0002	3.3	0.01	0.35	1.1 ^b				
Cyhalothrin, Lambda	0.0001	16.7	0.01	0.09	0.45 ^b				
Cypermethrin	0.0002	3.3	0.01	0.31	0.79 ^c				
Deltamethrin/Tralomethrin	0.0002	0.0	0.00	0.00	0.97 ^b				
Esfenvalerate	0.0002	0.0	0.00	0.00	1.5 ^b				
Fenpropathrin	0.0002	3.3	0.02	0.62	8.9 ^d				
Permethrin, Cis	0.0001	73.3	0.30	4.76	10.83 ^b				
Permethrin, Trans	0.0001	63.3	0.38	6.81	10.83 ^b				
Allethrin	0.0002	33.3	0.08	0.71	NA ^e				
Prallethrin	0.0002	6.7	0.02	0.34	NA ^e				
Resmethrin	0.0002	0.0	0.00	0.00	NA ^e				
Tetramethrin	0.0002	0.0	0.00	0.00	NA ^e				
Phenothrin	0.0002	0.0	0.00	0.00	NA ^e				
^a Median lethal concentration for <i>Hyalle</i> normalization ^b Amweg et al, 2005 ^c Maund et al, 2002 ^d Ding et al, 2009 ^e No value was available at the time of e			nt based on or	ganic carbo	n				

In surface water outfalls to the Yellowstone River, TU values greater than 0.4 were observed at several locations (Table 9). Sampling locations are part of the interconnected storm sewer system which receives regular and overflow discharges from storm water sewer systems and irrigation canals draining low and medium density developed areas within the City of Billings. These drainages include Hogans Slough, City/County Drain and Alkali Creek. At 2 sites, TUs were observed above 1 including Spring Creek Park (BILS-6) and in Big Ditch at Rehberg Lane (BILS-4).

Table 9. Toxic Unit Analysis for Sediment Samples									
Site ID	Toxic	: Units (TU	Js) ^{abc}	Name					
Site ID	6/1-6/2	9/1-9/2	11/15	Ivame					
BILS-1	0.11	NS	NS	High Ditch					
BILS-2	0.00	NS	NS	BBWA					
BILS-3	0.00	NS	0.00	Canyon Creek					
BILS-4	0.11	1.26	NS	High Ditch					
BILS-5	ND	NS	NS	BBWA					
BILS-6	0.10	NS	1.80	Spring Creek					
BILS-7	0.39	0.49	0.13	Hogan's Slough					
BILS-8	0.01	0.01	NS	BBWA					
BILS-9	0.78	NS	0.53	City/County Drain					
BILS-10	0.07	0.04	NS	BBWA					
BILS-11	0.65	NS	0.14	Alkali Creek					
BILS-12	NS	NS	ND	Canyon Creek					
BILS-13	NS	NS	ND	Hogan's Slough					
BILS-14	NS	NS	0.18	Hogan's Slough					
BILS-15	NS	NS	0.00	Blue Creek					
BILS-16	NS	NS	0.46	City/County Drain					
BILS-17	NS	NS	0.42	City/County Drain					
BILS-18	NS	NS	0.18	Alkali Creek					
BILS-19	NS	NS	0.55	Alkali Creek					
BILS-20	NS	NS	0.29	Hilltop Drain					
BILS-21	NS	NS	0.00	Two Moon Park - North					
 ^a 0.00 = pyrethroids detected at concentration(s) < 0.01TUs ^b ND = no pyrethroids detected in sample ^c NS = not sampled 									


In the 11/15/2010 sampling, sediment collection was expanded along several drainages that had TUs of concern as observed in the June 2010 sampling. Drainages with expanded sampling included Hogans Slough, City/County Drain and Alkali Creek in addition to previously unsampled outfalls to the Yellowstone River. Sediment TUs ranged from non-detect to 0.18 TUs (n=3) along Hogans Slough in west-central Billings. Samples were collected at 40th St. crossing, 26th St. crossing and at Elysian Road. TOC ranged from 0.43% - 0.79%. Significant differences in TUs among the sites was not observed. Previous samples at the Elysian Road crossing yielded TU values of 0.39 (6/1/2010) and 0.49 (9/1/2010) before falling to 0.13 on 11/15/2010.

Along the City/County Drain reach in central Billings, sediment was collected at 4 locations in November, 2010 (Figure 10). The City/County drain receives flow from the Bannister Drain (not shown), overflow from the BBWA ditch and sewer outfalls before discharging in the Yellowstone River. The 1.80 TUs at Spring Creek Park was the highest observed in all samples. Subsequent samples along the flow direction display a decrease in TUs more strongly correlated with increasing TOC than decreasing total pyrethroid

concentrations. The 1.80 TUs was a significant increase from 0.10 TUs observed at the same location (BILS-6) in the June sampling. At the lower end (BILS-9), TUs decreased from 0.78 TUs in June to 0.53 TUs in November.

Along Alkali Creek, sediment was collected at 3 points in the November 2010 sampling (Figure 11). TUs were < 0.2 at the lower sampling locations and 0.55 TUs at the Senators Blvd crossing. TOC was highest at the BILS-11 (0.14 TUs) even though total pyrethroid concentration was 5 times higher than at BILS-19 (0.55 TUs). The lower sampling point (BILS-11) had a TU of 0.65 (2.84% TOC) at the June sampling. In both Alkali Creek and the City/County Drain, concentrations decreased between the June and November.

6.0 DISCUSSION

6.1 Water Detections

The pesticides with the most detections in groundwater and surface water in Billings fall into three general categories: (1) herbicides used in corn crops; (2) herbicides used in non-crop areas; and (3) herbicides used in turf applications. Herbicides commonly used on turf (2,4-D, MCPA, MCPP, and dicamba) were mostly detected in surface water with very few detections in groundwater. Studies in turfgrasses indicate that leaching of pesticide compounds and nitrate are mitigated by high uptake by the turf, uptake by thatch and other soil organic matter, a high microbial population that promotes chemical degradation, and a high retention of water because of an extensive root system (Racke and Leslie, 1993, and Beard and Kenna, 2006). However, pesticides and nitrate can be carried away from turfgrass application sites by soil runoff from heavy precipitation events or irrigation. This runoff washes directly into surface waters or ends up in storm sewers which empty into surface waters.

On the other hand, pesticides such as 2,4-D and MCPA, which were detected in 100% and 65% of surface water samples during this project, are very commonly detected in surface waters all over Montana (82% and 51% of samples, respectively) and their presence may not be due to turf applications but may represent their uses in various crop and non-crop settings. MCPP has been detected in 16% of surface water samples across the state but was detected in 50% of surface water samples collected in Billings indicating a potential link with turf applications.

The herbicides used in corn crops and detected during this project include metolachlor, atrazine, alachlor, and bentazon. Metolachlor ESA, a degradate of metolachlor, was the most widespread pesticide detected during this project. It was detected in 94% of groundwater samples and 74% of surface water samples. Deethyl atrazine, a degradate of atrazine, was detected in 41% of groundwater samples and 29% of surface water samples. Atrazine was detected in 31% of groundwater samples but only 10% of surface water samples. Alachlor ESA, a degradate of alachlor, was detected in 28% of groundwater samples and 10% of surface water samples. Bentazon was detected in 16% of groundwater samples and 55% of surface water samples. The detection of corn crop herbicides is not unusual in the Yellowstone River Valley, as corn crops are fairly common. However, their widespread presence in all areas of the Billings urban area was unexpected. Some of these detections may be caused by atmospheric deposition of the pesticides from nearby applications as many of the detections are at very low concentrations.

The non-crop herbicides commonly detected include prometon, imazapyr, tebuthiuron, triclopyr, bromacil, and diuron. Most of these chemicals, with the exception of tebuthiuron and triclopyr, are used as soil sterilants, i.e., used in areas where long term

control of weeds and vegetation is desired. While soil sterilants are commonly associated with urban use, these pesticides are used in rural areas as well. Soil sterilants are used along road, railway, and other rights-of-way, industrial areas, around buildings and homes, driveways, patios, fences, storage areas, etc. These types of application areas exist all over the state but are concentrated in urban areas, so the use of soil sterilants is concentrated in urban areas. This is backed up by the high detection frequency of soil sterilants in Billings. For instance, since 2006, prometon has been detected in 28% of groundwater samples and 38% of surface water samples across the state. A majority of these samples were collected in rural areas. For the Billings project prometon was detected in 84% of groundwater samples and 58% of surface water samples. Imazapyr, which is detected in 13% of groundwater samples and 9% of surface water samples arcss the state, was detected in 75% of groundwater samples and 42% of surface water samples in Billings.

One herbicide that was not detected during this project was glyphosate, which is a commonly used urban pesticide. There are two reasons for the lack of detections. One, glyphosate is a hydrophobic chemical, meaning it does not readily dissolve in water; therefore it is not likely to be detected in water except at low concentrations. Second, the detection limit for glyphosate was very high at 10 ppb, compared to the other pesticide compounds that have detection limits 2-5 orders of magnitude lower. The glyphosate degradate AMPA, which does readily dissolve in water, was also not detected during this project, perhaps because of the high detection limit.

The BBWA irrigation canal was sampled at four different locations to determine if the urban environment is having an impact on the water quality of the canal. The BBWA canal receives storm water discharges and can also receive overland runoff during precipitation events or irrigation occurring in lawns and gardens. In theory, if pesticide impacts are occurring to the canal then the number of pesticides detected should increase and potentially the concentration should increase, as the water moves down the canal through the urban areas of Billings. The concentration of a pesticide would only increase down the canal if there were multiple sources of the same pesticide. If there were only one source, i.e., a storm sewer outfall, then the concentration would remain relatively constant down the canal.

The canal was sampled once above Billings (site ID BILS-2), twice within Billings (site IDs BILS-5 and BILS-8), and once below Billings (site ID BILS-10). For the June sampling there was no clear cut increase in the number of pesticides detected with three pesticides, three pesticides, four pesticides, and four pesticides detected, respectfully down the canal. During the September sampling the number of pesticides detected did increase down the canal with four detections, five detections, six detections, and eight detections, respectfully. There was no indication of increasing concentrations of pesticides down the canal during either the June or September sampling events.

While nitrate was detected in a majority of water samples none of the concentrations exceeded the HHS for drinking water of 10 mg/L. Nitrate concentrations were higher in groundwater then in surface water. In all, 72% of groundwater samples were above 3

mg/L, which is generally considered the concentration were anthropogenic impacts are occurring. There are likely numerous sources of nitrate in the Billings area including, but not limited to, septic effluent, fertilizer used in gardens and lawns, fertilizer used in agricultural fields which still exist in the urban area, and possibly natural sources. No attempt was made to determine the source of nitrate detections during this project.

6.1 Sediment Detections

There were 8 different pyrethroids detected in the sediment analyses for the three sampling events in 2010. Bifenthrin and permethrin isomers comprised 75% of all detections and accounted for 72% and 33% of total toxicity where detected respectively. The half-life of bifenthrin is 12-16 months and the half-life of permethrin is 3-4.7 months for *cis*- permethrin and 2-10 months for *trans*-permethrin (Laskowski, 2002; Gan et al., 2005). The more recently synthesized pyrethroids such as bifenthrin have far greater aquatic toxicity than first generation pyrethroids such as allethrin. Permethrin has numerous residential and commercial uses. Bifenthrin is used for structural pest control and lawn and garden applications. It is likely that retail sales and structural pest control and residential maintenance and control by professional applicators are the source of detected pesticides in the project area.

Amweg et al., 2005 observed greater than 40% mortality of the macro-invertebrate Hyalella azteca when TUs exceeded 0.4. In 2010, 9 samples from 8 sites in Billings exceeded 0.4 TUs. However, Hintzen et al (2009) observed that sites with <1 TU were generally non-toxic based on the authors' mortality experiments with collected sediment from urban watersheds in central Texas. This is in agreement with other sediment pyrethroid studies from California (Weston et al, 2005; Amweg et al, 2006). Hitzen et al (2009) also observed that sediments with low TOC displayed lower than predicted mortality rates and theorized that OC normalization may not be estimating bioavailability sufficiently and overestimating toxicity in sediments with low TOC. In the MDA study, only samples collected from BILS-4 and BILS-6 exceeded 1 TU. The TOC for BILS-4 was 1.21% (1.26 TUs; 9/2/10) and for BILS-6 the TOC was 0.22% (1.80 TUs; 11/15/10) and for. The BILS-6 sediment sample may have overestimated toxicity based on Hintzen et al (2009). Big Ditch (BILS-4) is an irrigation canal which diverts water from the Yellowstone River upstream of Park City and flows through the agricultural area west of Billings before continuing through the residential/suburban areas of north-central Billings along Poly Drive. The ditch ultimately discharges to the storm water system near Shady Lane. Several overflow structures do exist before the terminus including one at Rehberg Lane which flows into City/County Drain. Spring Creek (BILS-6) is also part of the City/County Drain network.

The pesticide synergist piperonyl butoxide (PBO) was not detected in sediments in this study. PBO does not have pesticidal properties but when added to pyrethoid formulations PBO considerably increases chemical potency. The detection of PBO would have provided a potential marker for pyrethroid use and deposition. In sediment, PBO half-life is up to 24 days (Arnold, 1998). This is significantly less than the half-lives for pyrethroids detected in Billings and may explain the lack of PBO detections.

Differences in sediment toxicities may be due to undetermined factors affecting bioavailability or toxic elements that remained undetected in the samples. Pyrethroid distributions have been found to be dependent upon adsorption coefficients (K_d) which increase with increasing organic carbon and clay contents of sediments (Gan et al., 2005). Preferential accumulation and deposition occurs where stream sediments contain a large fraction of these fractions. As total concentration increases with increasing organic carbon and clay, bioavailability may simultaneously decrease. Selective transport via erosion and subsequent enrichment of fine particles is the main mechanism for transportation of pyrethroids off-site (Gan et al., 2005). However, net export of pyrethroid contaminated sediments to receiving water bodies may be limited to extreme precipitation events capable of flushing sediments downstream.

The question of total sediment transport and discharge to the Yellowstone River of sediment-bound pyrethroids was not addressed by this study but should be recognized as a potentially significant transport mechanism of contaminant delivery to the Yellowstone River. This is perhaps highlighted in comparing pyrethroid results from June and November. In several outfalls to the Yellowstone River, pyrethroid concentrations decreased in sediment samples collected in the fall compared with the June 1-2 results. There was a significant rain event on June 20th, 2010 where a storm total of 2.24 in of precipitation was recorded at Billings International Airport. Precipitation intensity overwhelmed the storm water sewers in several parts of the city. The volume of sediment transported to the river is unknown, but a decrease in pyrethroid concentrations in Alkali Creek, Hogans Slough and City/County Drain for samples collected before and after June 20th, 2010 indicate that pyrethroids were carried in sediment to the Yellowstone River in the period between sample collections.

7.0 SUMMARY

A monitoring project was undertaken by the MDA to determine impacts to both groundwater and surface water from the use of pesticides and fertilizer in urban areas of Billings, Montana. A total of 32 groundwater and 31 surface water samples were collected during the summer of 2010 and analyzed for 95 pesticide compounds and the nutrient nitrate. In addition, 31 sediment samples were collected from streams, drains, and irrigation canals and analyzed for pyrethroid insecticides.

Pesticides were detected in all water samples collected. However, none of the pesticide concentrations exceeded human health drinking water standards developed by the Montana Department of Environmental Quality or aquatic life benchmarks developed by the EPA for surface waters. Groundwater detections were dominated by non-crop herbicides such as prometon, imazapyr, and tebuthiuron, although the most common detection in groundwater was metolachlor ESA, a degradate of a product used in corn, potatoes, and nursery crops. Surface water detections were dominated by herbicides which can be used in turfgrass such as 2,4-D, MCPA, and MCPP. However, these herbicides have numerous other uses in both crop and non-crop settings and their

presence in water around Billings cannot be solely attributed to turfgrass uses. Other common detections in surface water included the corn herbicides metolachlor ESA and bentazon, and non-crop herbicides such as prometon and tebuthiuron.

Groundwater nitrate concentrations were generally slightly elevated indicating impacts from nitrogen sources (fertilizer, manure, sewage), but none of the concentrations exceeded drinking water standards. Surface water nitrate concentrations were all below 1.6 mg/L.

Sediment analyses for pyrethroid insecticides yielded a wide range of toxicity and pyrethroids in the sediments of irrigation canals and natural and artificial drainages in and around the City of Billings. The generally low total organic carbon (TOC) of sediments in the project area increases the bioavailability of pyrethroids to aquatic macroinvertebrates. Greater than 72% of the total toxicity was from bifenthrin. This is in agreement with other pyrethroid studies by Hintzen et al (2009), Amweg et al (2006) and Weston et al (2005) where bifenthrin is the most commonly detected pyrethroid contributing the greatest fraction of toxicity in urban watersheds. Research has also established that toxicity from pyrethroids is more severe and widespread in urban areas compared with agricultural lands (Weston et al, 2004; Ng et al, 2008; Weston and Lydy, 2010). In Billings, pyrethroids are being transported through the drainage network of interconnected irrigation canals and the storm water sewer system with multiple discharge points in the Yellowstone River. The relatively impervious nature of urban watersheds promotes overland runoff and high velocity flows in comparison with undisturbed catchments and facilitates sediment deposition and contaminant transport to the Yellowstone River.

8.0 REFERENCES

- Alvarez, D.A., Petty, J.D, Huckins, J.N., Hones-Lepp, T.A., Getting, D.T., Goddard, J.P., and Manahan, S.E., 2004, Development of a Passive, In Situ, Integrative Sampler for Hydrophilic Organic Contaminants in Aquatic Environments. Environmental Toxicology and Chemistry, Vol. 23, No. 7, pp. 1640-1648.
- Alvarez, D.A., Stackelberg, P.E., Petty, J.D., Huckins, J.N., Furlong, E.T., Zaugg, S.D., and Meyer, M.T., 2005, Comparison of a Novel Passive Sampler to Standard Water-Column Sampling for Organic Contaminants Associated with Wastewater Effluents Entering a New Jersey Stream. Chemosphere 61, pp. 610-622
- Amweg, E.L., Weston, D.P., and Ureda, N.M., 2005, Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA: Environmental Toxicology and Chemistry, v. 24, p. 966-972. Erratum v. 24.
- Amweg, E.L., Weston, D.P., You, J., Lydy, M.J., 2006, Pyrethroid insecticides and sediment toxicity in urban creeks in California and Tennessee: Environmental Science and Technology, v. 40, p. 1700-1706.

- Arnold, D.J., 1998, The fate and behavior of piperonyl butoxide in the environment. In D.G. Jones, ed. <u>Piperonyl butoxide: The insecticide synergist</u>: San Diego: Academic Press, pp. 105-117.
- Barbash J.E. and Resek, E.A., 1996, <u>Pesticides in Groundwater: Distribution, Trends,</u> and Governing Factors: Ann Arbor Press, Inc., Chelsea, MI, 588 p.

Beard, J.B., and Kenna, M.P., 2006, <u>Water Quality and Quantity Issues for Turfgrasses in</u> <u>Urban Landscapes</u>: Council for Agricultural Science and Technology Special Publication 27, 298 pp.

- Ding, Y., Harwood, A.D., Foslund, H.M., and Lydy, M.J., 2009, Distribution and toxicity of sediment-associated pesticides in urban and agricultural waterways from Illinois, USA. Environmental Toxicology and Chemistry, v. 29, p. 149-157
- Gan, J., Lee, S.J., Liu, W.P., Haver, D.L., and Kabashima, J.N., 2005, Distribution and persistence of pyrethroids in runoff sediments: Journal of Environmental Quality, v. 34, p. 836-841.
- Hintzen, E.P., Lydy, M.J., and Belden J.B., 2009, Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas: Environmental Pollution, v. 159, p. 110-116
- Larson, S.J., Capel, P.D., and Majewski, M.S., 1997, <u>Pesticides in Surface Waters:</u> <u>Distribution, Trends, and Governing Factors</u>: Ann Arbor Press, Chelsea, MI, 373 pp.
- Laskowski, D.A., 200, Physical and chemical properties for pyrethroids. Reviews of Environmental Contamination and Toxicology, v. 174, p. 49-170
- Maund, S.J., Hamer, M.J., Lane, M.C., Farrelly, E., Rapley, J.H., Goggin, U.M., and Gentle, W.E., 2002, Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments: Environmental Toxicology and Chemistry, v. 21, p. 9-15.
- Ng, C.M., and Weston D.P., 2008, Patterns of pyrethroid contamination and toxicity in agricultural and urban stream segments: Synthetic Pyrethroids. Washington D.C., American Chemical Society, p. 355-359
- Olsen, J.L., and Reiton, J.C., 2002, Hydrogeology of the West Billings Area: Impacts of Land-Use Changes on Water Resources. Montana Bureau of Mines and Geology Report of Investigation, Report No. 206, 33 pp.
- Olsen, J.L., 2005, Characterization of alluvial aquifers in Treasure and Yellowstone Counties, Middle Yellowstone River Area, Montana. Montana Bureau of Mines and Geology: Ground-Water Assessment Atlas 3B-03, 1 sheet, 1:50,000.

Significance: American Chemical Society Symposium Series 522, 378 pp.

- Racke, K.D, and Leslie, A.R., 1993, <u>Pesticides in Urban Environments: Fate and</u> <u>Significance</u>: American Chemical Society Symposium Series 522, 378 pp.
- Weston, D.P., and Lydy, M.J., 2010, Urban and Agricultural sources of pyrethroid insecticides to the Sacramento-San Joaquin Delta of California: Environmental Science and Technology, v. 44(5), p. 1833-1840
- Weston, D.P., You, J., and Lydy, M.J., 2004, Distribution and toxicity of sedimentassociated pesticides in agriculture-dominated water bodies of California's

APPENDIX A

ANALYTE LIST AND LIMITS OF QUANTIFICATION (LOQ)

ANALYTEXNELOQUNTSANALYTENSELOQUNTS24.D0.001ug/.tppl)imamethabera methylacia metaholacia0.002ug/.tppl)25.OH Carbolina0.001ug/.tppl)imaarathabera methylacia metaholacia0.001ug/.tppl)Accolube ISA0.001ug/.tppl)imaarathabera methylacia metaholacia0.001ug/.tppl)Accolube ISA0.001ug/.tppl)imaarathabera methylacia metaholacia0.001ug/.tppl)Accolube ISA0.001ug/.tppl)imachabera methylacia metaholacia0.001ug/.tppl)Accolube ISA0.001ug/.tppl)imachabera methylacia0.001ug/.tppl)Accolube ISA0.001ug/.tppl)imachabera0.001ug/.tppl)Ackabr Alabada0.002ug/.tppl)imachabera0.002ug/.tppl)Atkabr0.002ug/.tppl)MCPA0.002ug/.tppl)Atkabr0.001ug/.tppl)MCPA0.002ug/.tppl)Atkabr0.002ug/.tppl)MCPA0.002ug/.tppl)Atkabr0.002ug/.tppl)MCPA0.002ug/.tppl)Atkabr0.001ug/.tppl)MCPA0.002ug/.tppl)Atkabr0.001ug/.tppl)McMargan0.002ug/.tppl)Atkabr0.001ug/.tppl)McMargan0.002ug/.tppl)Atkabr0.001ug/.tppl)McMargan0.002ug/.tppl)Atkabr0.001ug/.tppl)McMargan0.002<	2010 MDA Montana Universal Method Analyte List and Limits of Quantification (LOQ)									
SchCabelinan0.000ug/Lqpb)maxnextubiester0.000ug/Lqpb)Acetokher SA0.001ug/Lqpb)maxnex0.001ug/Lqpb)Acetokher SA0.000ug/Lqpb)maxney0.001ug/Lqpb)Acetokher SA0.001ug/Lqpb)maxneyn0.001ug/Lqpb)Acetokher SA0.000ug/Lqpb)maxneyn0.001ug/Lqpb)Alkahor0.000ug/Lqpb)imaxneyn0.001ug/Lqpb)Alkahor SA0.000ug/Lqpb)imaxneyn0.001ug/Lqpb)Alkahor Sa0.000ug/Lqpb)imaxneyn0.002ug/Lqpb)Alkahor Sa0.000ug/Lqpb)MAhon0.002ug/Lqpb)Alkahor Sa0.000ug/Lqpb)MAhon0.002ug/Lqpb)Alkahor Sa0.0001ug/Lqpb)MAhon0.002ug/Lqpb)Alkahor Sa0.0002ug/Lqpb)MAhon0.002ug/Lqpb)Anapise nethyloan0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Anapise nethyloan0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Anapise nethyloan0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Anapise nethyloan0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Anapise nethyloan0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Cabaran0.0013ug/Lqpb)MetakortSa0.002ug/Lqpb)Cabaran0.0013ug/Lqpb)Metakort	ANALYTENAME	LOQ	UNITS	ANALYTE NAME	LOQ	UNITS				
Actochlir0.011ug1.(pb)manox0.012ug1.(pb)Actochlir CSA0.001ug1.(pb)maxapc0.011ug1.(pb)Actochlir CA0.001ug1.(pb)maxabayr0.011ug1.(pb)Alchor SA0.001ug1.(pb)maxabayr0.011ug1.(pb)Alchor SA0.0001ug1.(pb)maxabayr0.001ug1.(pb)Alchor SA0.0001ug1.(pb)Malafon0.001ug1.(pb)Alkarb allion0.002ug1.(pb)Malafon0.002ug1.(pb)Alkarb allion0.002ug1.(pb)Malafon0.002ug1.(pb)Alkarb allion0.002ug1.(pb)Malafon0.002ug1.(pb)Alkarb allion0.002ug1.(pb)Malafon0.002ug1.(pb)Alkarb allion0.002ug1.(pb)Malafon0.002ug1.(pb)Anapos mathyl coan0.002ug1.(pb)Malafon0.002ug1.(pb)Anapos mathyl coan0.001ug1.(pb)Malafon0.002ug1.(pb)Anapos mathyl coan0.001ug1.(pb)Malafon0.002ug1.(pb)Chahari0.001ug1.(pb)Notarration0.001ug1.(pb)Chahari0.001ug1.(pb)Notarration0.001ug1.(pb)Chahari0.001ug1.(pb)Notarration0.001ug1.(pb)Chahari0.002ug1.(pb)Notarration0.001ug1.(pb)Chahari0.001ug1.(pb)Notarration0.001 <td>2,4-D</td> <td>0.0045</td> <td>ug/L (ppb)</td> <td>Imazamethabenz methyl acid metabolite</td> <td>0.0052</td> <td>ug/L (ppb)</td>	2,4-D	0.0045	ug/L (ppb)	Imazamethabenz methyl acid metabolite	0.0052	ug/L (ppb)				
Actockhr ISA00ug/l (ph)manpic00ug/l (ph)Accochkr OA0000ug/l (ph)mackapyr0.011ug/l (ph)Abchbr OA0.001ug/l (ph)iscafnayr0.001ug/l (ph)Abchbr OA0.000ug/l (ph)iscafnane0.001ug/l (ph)Abchar OA0.001ug/l (ph)iscafnane0.001ug/l (ph)Abcar MacOA0.002ug/l (ph)Mathan0.002ug/l (ph)Abcars MacOA0.002ug/l (ph)MATA0.002ug/l (ph)Abcars MacOA0.003ug/l (ph)MATA0.002ug/l (ph)Abcars MacOA0.001ug/l (ph)MATA0.002ug/l (ph)Abcars MacOA0.001ug/l (ph)Mathan0.001ug/l (ph)Anapas methyloan0.001ug/l (ph)MacOA0.002ug/l (ph)Anapas methyloan0.001ug/l (ph)Mathan0.001ug/l (ph)Bansan0.001ug/l (ph)Natara0.001ug/l (ph)Bansan0.001ug/l (ph)Natara0.001ug/l (ph)Caboran0.005ug/l (ph)Natara0.001ug/l (ph)Bansan0.001ug/l (ph)Natara0.001ug/l (ph)Caboran0.005ug/l (ph)Natara0.001ug/l (ph)Caboran0.005ug/l (ph)Natara0.001ug/l (ph)Caboran0.005ug/l (ph)Natara0.001ug/l (ph) <td>3-OH Carbofuran</td> <td>0.01</td> <td>ug/L (ppb)</td> <td>Imazamethabenz methyl ester</td> <td>0.001</td> <td>ug/L (ppb)</td>	3-OH Carbofuran	0.01	ug/L (ppb)	Imazamethabenz methyl ester	0.001	ug/L (ppb)				
AccoshCroA0000ug1.qpb)maxpr0.010ug1.qpb)Alashor XA0.011ug1.qpb)insickpord0.001ug1.qpb)Alashor XA0.0031ug1.qpb)insickpord0.001ug1.qpb)Alashor XA0.0031ug1.qpb)insickpord0.001ug1.qpb)Alicarb alloac0.0003ug1.qpb)insickpord0.002ug1.qpb)Alicarb alloac0.0003ug1.qpb)Mahan0.002ug1.qpb)Alicarb alloac0.0005ug1.qpb)Mahan0.002ug1.qpb)Alicarb alloac0.0001ug1.qpb)Mahan0.002ug1.qpb)Alicarb alloac0.0001ug1.qpb)Mahan0.001ug1.qpb)Alicarb alloac0.0001ug1.qpb)Mahan0.001ug1.qpb)Anaplos nethyl con0.001ug1.qpb)Mahan0.002ug1.qpb)Anaplos nethyl con0.001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)Bonnard0.0001ug1.qpb)Mahan0.001ug1.qpb)B	Acetochlor	0.14	ug/L (ppb)	Imazamox	0.012	ug/L (ppb)				
Akahor 0.01 ng/t.(ph) ImaceInport 0.01 ng/t.(ph) Akahor OA 0.0014 ng/t.(ph) Imakachord 0.0015 ng/t.(ph) Akahor OA 0.0024 ng/t.(ph) Imaron 0.001 ng/t.(ph) Akahor AL 0.0024 ng/t.(ph) Mathion 0.002 ng/t.(ph) Akahor Sulfoxé 0.0025 ng/t.(ph) Mathion 0.002 ng/t.(ph) Akahor Sulfoxé 0.0025 ng/t.(ph) Mathion 0.0025 ng/t.(ph) Amino mulyi 0.0021 ng/t.(ph) Mathion 0.0021 ng/t.(ph) Anapho mulyi Oon 0.0021 ng/t.(ph) Mathion ACA 0.0021 ng/t.(ph) Anapho mulyi Oon 0.0021 ng/t.(ph) Mathion ACA 0.0021 ng/t.(ph) Anapho mulyi Oon 0.0021 ng/t.(ph) Mathion ACA 0.0021 ng/t.(ph) Anapho mulyi Oon 0.0021 ng/t.(ph) Mathion ACA 0.0021 ng/t.(ph) Anapho mulyi Oon 0.0021 ng/t.(ph)<	Acetochlor ESA	0.01	ug/L (ppb)	Imazapic	0.011	ug/L (ppb)				
Alachir ESA 0.001 ug/L (pp) Indiaclopid 0.001 ug/L (pp) Alachir CA 0.014 ug/L (pp) Kosubiloc 0.01 ug/L (pp) Alicarb 0.005 ug/L (pp) Kosubiloc 0.01 ug/L (pp) Alicarb sulface 0.005 ug/L (pp) MCPA 0.002 ug/L (pp) Alicarb sulface 0.005 ug/L (pp) MCPA 0.002 ug/L (pp) Alicarb sulface 0.005 ug/L (pp) Mcabshi 0.002 ug/L (pp) Alicarb sulface 0.002 ug/L (pp) Mcabshi 0.002 ug/L (pp) Alimpos methyl con 0.002 ug/L (pp) Mcabshir SA 0.002 ug/L (pp) Anaphos methyl con 0.001 ug/L (pp) Mcabshir SA 0.002 ug/L (pp) Anaphos methyl con 0.001 ug/L (pp) Mcabshir SA 0.002 ug/L (pp) Anaphos methyl con 0.001 ug/L (pp) Mcabshir SA 0.001 ug/L (pp) Bomanyal 0.001 ug/L (pp)	Acetochlor OA	0.0042	ug/L (ppb)	Imazapyr	0.011	ug/L (ppb)				
Alachar OA 0.0034 ug/L (pp) lasonfluxiole 0.11 ug/L (pp) Atkicab allon 0.005 ug/L (pp) Immorn 0.011 ug/L (pp) Atkicab allon 0.005 ug/L (pp) Minino 0.021 ug/L (pp) Atkicab aulioxide 0.005 ug/L (pp) MCPA 0.0022 ug/L (pp) Atmorphild 0.005 ug/L (pp) MCPA 0.0022 ug/L (pp) Atmorphild 0.0052 ug/L (pp) Methonyl 0.0021 ug/L (pp) Amphos methyl 0.0051 ug/L (pp) Methonyl 0.0021 ug/L (pp) Amphos methyl oon 0.0052 ug/L (pp) Methon/Lon TAX1 0.0052 ug/L (pp) Amphos methyl oon 0.0051 ug/L (pp) Methon/Lon TAX1 0.011 ug/L (pp) Bomoral 0.0051 ug/L (pp) NordTAX54 0.011 ug/L (pp) Bomoral 0.0062 ug/L (pp) NordTAX54 0.011 ug/L (pp) Cabofura 0.005 ug/L (pp)	Alachlor	0.11	ug/L (ppb)	Imazethapyr	0.01	ug/L (ppb)				
Alicanb0.003ug/L (pp)Lanaon0.011ug/L (pp)Alicanb0.021ug/L (pp)Malathion0.022ug/L (pp)Alicanb0.005ug/L (pp)MCP0.0022ug/L (pp)Anianopynial0.005ug/L (pp)MCPP0.002ug/L (pp)Aniano0.0021ug/L (pp)Mcelanky0.001ug/L (pp)Arazano0.0021ug/L (pp)Metolackiar0.001ug/L (pp)Arazano0.0031ug/L (pp)Metolackiar0.0021ug/L (pp)Arazano0.0031ug/L (pp)Metolackiar0.0021ug/L (pp)Arazano0.0031ug/L (pp)Metolackiar0.0021ug/L (pp)Bentazon0.0041ug/L (pp)Metolackiar0.0021ug/L (pp)Bentazon0.0041ug/L (pp)NoAr47540.001ug/L (pp)Bromoxul0.0052ug/L (pp)NoAr47540.002ug/L (pp)Carboliran0.0053ug/L (pp)Nordinazon Assenthy10.002ug/L (pp)Carboliran0.0053ug/L (pp)Nordinazon Assenthy10.002ug/L (pp)Choinaforp propargi acid0.013ug/L (pp)Nordinazon Assenthy10.023ug/L (pp)Choinaforp propargi acid0.013ug/L (pp)Nordinazon Assenthy10.024ug/L (pp)DiDA0.01ug/L (pp)Nordinazon Assenthy10.025ug/L (pp)DiDA0.01ug/L (pp)Nordinazon Assenthy10.025ug/L (pp) <td>Alachlor ESA</td> <td>0.011</td> <td>ug/L (ppb)</td> <td>Imidacloprid</td> <td>0.0018</td> <td>ug/L (ppb)</td>	Alachlor ESA	0.011	ug/L (ppb)	Imidacloprid	0.0018	ug/L (ppb)				
Alicarb sulfone0.0021ug/L(ppb)Malahion0.0023ug/L(ppb)Alicarb sulfoxide0.0051ug/L(ppb)MCPA0.0021ug/L(ppb)Annoynyald0.0010ug/L(ppb)Methornyl0.0011ug/L(ppb)Atrañe0.0021ug/L(ppb)Methornyl0.0016ug/L(ppb)Araphon methyl own0.0011ug/L(ppb)Methorh/L0.0022ug/L(ppb)Araphon methyl own0.0012ug/L(ppb)Methorh/L0.0022ug/L(ppb)Araphon methyl own0.0014ug/L(ppb)Methorh/L0.0021ug/L(ppb)Bonacai0.0004ug/L(ppb)Methorh/L0.0021ug/L(ppb)Bonacai0.0004ug/L(ppb)NA 475340.0022ug/L(ppb)Bonacai0.0016ug/L(ppb)NA 472040.001ug/L(ppb)Cabdarían0.0026ug/L(ppb)NA 472040.002ug/L(ppb)Cholarain0.0026ug/L(ppb)Peloram0.02ug/L(ppb)Cholarain0.0025ug/L(ppb)Peloram0.02ug/L(ppb)Cholarain0.0025ug/L(ppb)Peloram0.02ug/L(ppb)Cholarain0.0025ug/L(ppb)Peloram0.002ug/L(ppb)Dicholarain0.002ug/L(ppb)Pronecion0.005ug/L(ppb)Cholarain0.002ug/L(ppb)Pronecion0.005ug/L(ppb)Dicholarain0.002ug/L(ppb)Pronecion0.005ug/L(ppb)Dicholarain0.002 </td <td>Alachlor OA</td> <td>0.0034</td> <td>ug/L (ppb)</td> <td>Isoxaflutole</td> <td>0.13</td> <td>ug/L (ppb)</td>	Alachlor OA	0.0034	ug/L (ppb)	Isoxaflutole	0.13	ug/L (ppb)				
Alkarb sulioxide 0.0056 ug/L(ppb) MCPA 0.0023 ug/L(ppb) Aminopynild 0.0053 ug/L(ppb) McIbayl 0.0022 ug/L(ppb) Amizane 0.0022 ug/L(ppb) Methonyl 0.0012 ug/L(ppb) Arazane 0.0022 ug/L(ppb) Methonyl 0.0012 ug/L(ppb) Arazane 0.0011 ug/L(ppb) Methonyl 0.0022 ug/L(ppb) Araphos methyl oson 0.0011 ug/L(ppb) Metholshor CA 0.0021 ug/L(ppb) Bentzani 0.0014 ug/L(ppb) McIshikoro methyl 0.0022 ug/L(ppb) Bomoxyail 0.0054 ug/L(ppb) NcMarDA 0.0022 ug/L(ppb) Cabayl 0.0064 ug/L(ppb) NcMarDA 0.0022 ug/L(ppb) Chonyafro 0.0015 ug/L(ppb) NcMarDA 0.002 ug/L(ppb) Chonyafro 0.0015 ug/L(ppb) NcMarDA 0.002 ug/L(ppb) Chonyafro 0.011 ug/L(ppb) NcMarDA	Aldicarb	0.065	ug/L (ppb)	Linuron	0.011	ug/L (ppb)				
Aninopyralid 0.005 ug/L (ppb) MCPP 0.0022 ug/L (ppb) Atmane 0.002 ug/L (ppb) Metabayl 0.0012 ug/L (ppb) Aranae 0.002 ug/L (ppb) Metabayl 0.0012 ug/L (ppb) Aranhos methyl 0.con 0.0013 ug/L (ppb) Metobachor SA 0.0002 ug/L (ppb) Aranys strobhin 0.0001 ug/L (ppb) Metobachor SA 0.0002 ug/L (ppb) Aranys 0.0001 ug/L (ppb) Metobachor SA 0.0012 ug/L (ppb) Aranys 0.0001 ug/L (ppb) Nossulfanon methyl 0.002 ug/L (ppb) Bomoxynl 0.004 ug/L (ppb) Nordar254 0.001 ug/L (ppb) Carbayl 0.004 ug/L (ppb) Nordar254 0.002 ug/L (ppb) Carbayl 0.005 ug/L (ppb) Nordar254 0.001 ug/L (ppb) Carbayl 0.005 ug/L (ppb) Nordar264 0.002 ug/L (ppb) Carbayl 0.005 ug/L (ppb) <	Aldicarb sulfone	0.022	ug/L (ppb)	Malathion	0.028	ug/L (ppb)				
AMPA O ugl.(ppb) Metalaxyl O.002 ugl.(ppb) Atrazine 0.002 ugl.(ppb) Methomyl 0.0016 ugl.(ppb) Asimphos methyl 0.001 ugl.(ppb) Metolachlor 0.0012 ugl.(ppb) Asimphos methyl coan 0.0001 ugl.(ppb) Metolachlor 0.0021 ugl.(ppb) Asamphos methyl coan 0.0001 ugl.(ppb) Metolachlor CAA 0.0021 ugl.(ppb) Bomaxil 0.0001 ugl.(ppb) Metolachlor CAA 0.0011 ugl.(ppb) Bomaxin 0.0004 ugl.(ppb) NoA 407854 0.0022 ugl.(ppb) Carbofuran 0.0025 ugl.(ppb) NoA 407854 0.0021 ugl.(ppb) Chorburan 0.0025 ugl.(ppb) Northarzan desmethyl 0.02 ugl.(ppb) Chorburan 0.0025 ugl.(ppb) Propachlor 0.0035 ugl.(ppb) Chorburan 0.0035 ugl.(ppb) Propachlor 0.0035 ugl.(ppb) Chorburan 0.0015 ugl.(ppb	Aldicarb sulfoxide	0.056	ug/L (ppb)	МСРА	0.0023	ug/L (ppb)				
Atraine0.0002wg/L (pph)Methonyl0.0010wg/L (pph)Aamphos methyl coon0.0031wg/L (pph)Metolachfor SAA0.002wg/L (pph)Aamphos methyl coon0.0003wg/L (pph)Metolachfor SAA0.0005wg/L (pph)Bonacai0.0001wg/L (pph)Metolachfor SAA0.0005wg/L (pph)Bonacai0.0001wg/L (pph)Nicoulirion methyl coon0.0011wg/L (pph)Bonacai0.0006wg/L (pph)Nicoulirion0.001wg/L (pph)Bonacai0.0006wg/L (pph)Nicoulirion0.001wg/L (pph)Carbaryl0.0005wg/L (pph)Nicoulirion0.002wg/L (pph)Chobnyrifos0.0005wg/L (pph)Nichrinzon desnethyl0.02wg/L (pph)Chobnyrifos0.0005wg/L (pph)Pichrinzon desnethyl0.002wg/L (pph)Chobnyrifos0.0005wg/L (pph)Pipoachfor Acomethyl0.002wg/L (pph)Dipoachfor Acomethyl0.0005wg/L (pph)Pipoachfor Acomethyl0.001wg/L (pph)Dipoachfor Acomethyl0.0005wg/L (pph)Pipoachfor Acomethyl0.001wg/L (pph)Dipoinozak0.0001wg/L (pph)Pipoachfor Acomethyl0.001wg/L (pph)Dichoramid0.0001wg/L (pph)Pipoinozak0.001wg/L (pph)Dichoramid0.0001wg/L (pph)Pipoachfor Acomethyl0.001wg/L (pph)Dichoramid0.0001wg/L (pph)Pipoachfor Acomethyl<	Aminopyralid	0.053	ug/L (ppb)	МСРР	0.0022	ug/L (ppb)				
Arinphos methyl 0.017 $ugl.(ppb)$ Metolachlor 0.012 $ugl.(ppb)$ Arinphos methyl oxn 0.0031 $ugl.(ppb)$ Metolachlor ESA 0.0025 $ugl.(ppb)$ Axoystrobin 0.0011 $ugl.(ppb)$ Metolachlor OA 0.021 $ugl.(ppb)$ Bentazon 0.0014 $ugl.(ppb)$ Metolachlor OA 0.021 $ugl.(ppb)$ Bornacil 0.0074 $ugl.(ppb)$ Nicosulfaron 0.0011 $ugl.(ppb)$ Bornacid 0.0064 $ugl.(ppb)$ Nicosulfaron 0.001 $ugl.(ppb)$ Carboturan 0.0022 $ugl.(ppb)$ Norfharzon 0.02 $ugl.(ppb)$ Chorburan 0.0054 $ugl.(ppb)$ Norfharzon 0.02 $ugl.(ppb)$ Chorburan 0.0054 $ugl.(ppb)$ Pometon 0.0054 $ugl.(ppb)$ Chorburan 0.0054 $ugl.(ppb)$ Pometon 0.0054 $ugl.(ppb)$ Chorburan 0.0054 $ugl.(ppb)$ Pometon 0.0054 $ugl.(ppb)$ Chorburan <td< td=""><td>АМРА</td><td>10</td><td>ug/L (ppb)</td><td>Metalaxyl</td><td>0.012</td><td>ug/L (ppb)</td></td<>	АМРА	10	ug/L (ppb)	Metalaxyl	0.012	ug/L (ppb)				
Araphos methyloxon 0.031 ug/L(pph) Metolachlor ESA 0.0025 ug/L(pph) Axaystobin 0.0032 ug/L(pph) Metolachor OA 0.031 ug/L(pph) Bentazon 0.0011 ug/L(pph) Metolachor OA 0.032 ug/L(pph) Bornaci 0.0074 ug/L(pph) NoA 407854 0.0022 ug/L(pph) Carbofaran 0.0052 ug/L(pph) NoA 407854 0.002 ug/L(pph) Carbofaran 0.0052 ug/L(pph) Norflarzon desmethyl 0.02 ug/L(pph) Chosynfios 0.013 ug/L(pph) Norflarzon desmethyl 0.02 ug/L(pph) Chosynfios 0.013 ug/L(pph) Prometon 0.0051 ug/L(pph) Chosynfios 0.013 ug/L(pph) Propachor 0.0031 ug/L(pph) Chosynfios 0.011 ug/L(pph) Propachor 0.0031 ug/L(pph) Chosynfios 0.013 ug/L(pph) Propachor 0.0031 ug/L(pph) Delohava 0.021 ug/L(pph)<	Atrazine	0.0022	ug/L (ppb)	Methomyl	0.0016	ug/L (ppb)				
Axosystmbin0.0025ug/L (ppb)Metolachor OA0.002ug/L (ppb)Bentazon0.0011ug/L (ppb)Metolachor OA0.002ug/L (ppb)Bromoxyni0.006ug/L (ppb)Nicosuffuron methyl0.007ug/L (ppb)Bomoxyni0.006ug/L (ppb)NOA 497540.001ug/L (ppb)Carbaryl0.0052ug/L (ppb)NoA 472040.001ug/L (ppb)Carbofuran0.0052ug/L (ppb)Northrazon desmethyl0.02ug/L (ppb)Chorsuffuron0.0056ug/L (ppb)Northrazon desmethyl0.02ug/L (ppb)Chorsuffuron0.0056ug/L (ppb)Pickaran0.0051ug/L (ppb)Chorsuffuron0.005ug/L (ppb)Pickaran0.0051ug/L (ppb)Chorsuffuron0.005ug/L (ppb)Pickaran0.0051ug/L (ppb)DEDIA0.012ug/L (ppb)Picpachor OA0.0054ug/L (ppb)Dechynatarine0.0011ug/L (ppb)Picpachor OA0.0051ug/L (ppb)Diefnoconazole0.002ug/L (ppb)Picpachor OA0.002ug/L (ppb)Diefnoconazole0.001ug/L (ppb)Silisztfuron0.002ug/L (ppb)Dienchenamid OA0.0031ug/L (ppb)Silisztfuron0.004ug/L (ppb)Dienchenamid OA0.0031ug/L (ppb)Silisztfuron0.004ug/L (ppb)Dienchenamid OA0.0031ug/L (ppb)Silisztfuron0.004ug/L (ppb)Dienchenamid OA0.0031<	Azinphos methyl	0.037	ug/L (ppb)	Metolachlor	0.012	ug/L (ppb)				
Bentaxon0.0011ug/L (pp)Metsuffaron methyl0.002ug/L (pp)Bromoxynl0.0074ug/L (pp)NoA 4078540.0032ug/L (pp)Bromoxynl0.006ug/L (pp)NOA 472040.001ug/L (pp)Carborfun0.0062ug/L (pp)Norflarzan0.002ug/L (pp)Chofuran0.0063ug/L (pp)Norflarzan0.002ug/L (pp)Chofurfur0.0065ug/L (pp)Norflarzan0.002ug/L (pp)Chofurfur0.0065ug/L (pp)Prekram0.014ug/L (pp)Chofurfur0.0065ug/L (pp)Prekram0.005ug/L (pp)Chofurfur0.0012ug/L (pp)Propachlor0.0024ug/L (pp)Deshyratazine0.0011ug/L (pp)PropachlorOA0.0094ug/L (pp)Deshyratazine0.0011ug/L (pp)Prosuffaron0.002ug/L (pp)Deshoroparylatazine0.001ug/L (pp)Prosuffaron0.002ug/L (pp)Deshoroparylatazine0.001ug/L (pp)Sinforeturon methyl0.002ug/L (pp)Dienconazole0.003ug/L (pp)Sinforeturon methyl0.004ug/L (pp)Dimethoared0.0011ug/L (pp)Sinforeturon methyl0.001ug/L (pp)Dimethoared0.0011ug/L (pp)Sinforeturon methyl0.001ug/L (pp)Dimethoared0.0011ug/L (pp)Sinforeturon methyl0.001ug/L (pp)Dimethoared0.0011ug/L (pp)Sinfor	Azinphos methyl oxon	0.031		Metolachlor ESA	0.0025	ug/L (ppb)				
Bennaci 0.007 $ug/L(ppb)$ Nicosulliaron 0.011 $ug/L(ppb)$ Bromoxynl 0.006 $ug/L(ppb)$ NOA 407854 0.0052 $ug/L(ppb)$ Carbairan 0.0052 $ug/L(ppb)$ NOA 447204 0.01 $ug/L(ppb)$ Carboiran 0.0052 $ug/L(ppb)$ Nofrlazzon 0.002 $ug/L(ppb)$ Chorynfös 0.011 $ug/L(ppb)$ Nofrlazzon 0.011 $ug/L(ppb)$ Chorsufaron 0.0056 $ug/L(ppb)$ Nofrlazzon 0.011 $ug/L(ppb)$ Chorsufaron 0.005 $ug/L(ppb)$ Poreton 0.0051 $ug/L(ppb)$ Chorsufaron 0.011 $ug/L(ppb)$ Poreton 0.0028 $ug/L(ppb)$ Chorsufaron 0.021 $ug/L(ppb)$ Poretonazole 0.0021 $ug/L(ppb)$ Destonosynlatrazine 0.001 $ug/L(ppb)$ Propiconazole 0.0027 $ug/L(ppb)$ Direchoarabe 0.001 $ug/L(ppb)$ Sinfoarton methyl 0.0027 $ug/L(ppb)$ <	Azoxystrobin	0.0025		Metolachlor OA	0.021	ug/L (ppb)				
Bromaci0.0074ug/L (ppb)Nicosulfuron0.0011ug/L (ppb)Bromoxynl0.006ug/L (ppb)NOA 4078540.0052ug/L (ppb)Carbotran0.0062ug/L (ppb)Norfunazon0.002ug/L (ppb)Chlorynfos0.013ug/L (ppb)Norfunazon desnethyl0.02ug/L (ppb)Chlorynfos0.013ug/L (ppb)Pickram0.014ug/L (ppb)Chlorynfos0.013ug/L (ppb)Pickram0.005ug/L (ppb)Chlorynfos0.013ug/L (ppb)Pickram0.005ug/L (ppb)Chlorynfad0.025ug/L (ppb)Pickram0.005ug/L (ppb)Chlorynfad0.025ug/L (ppb)Piopachlor OA0.006ug/L (ppb)DEDIA0.051ug/L (ppb)Piopachlor OA0.005ug/L (ppb)Destopoylatnzine0.001ug/L (ppb)Piopachlor OA0.002ug/L (ppb)Diednoconazole0.002ug/L (ppb)Piosatalan0.002ug/L (ppb)Dimethenamid OA0.001ug/L (ppb)Sinforun enthyl0.001ug/L (ppb)Dimethenamid OA0.001ug/L (ppb	Bentazon	0.0011	ug/L (ppb)	Metsulfuron methyl	0.026	ug/L (ppb)				
Bronoxynil0.000ug/L(ppb)NOA 4078540.00022ug/L(ppb)Carbary10.001ug/L(ppb)NOA 4472040.001ug/L(ppb)Carbofuran0.0052ug/L(ppb)Norflurazon0.002ug/L(ppb)Chlorynfios0.0031ug/L(ppb)Norflurazon desmethy10.002ug/L(ppb)Chlorynfios0.0036ug/L(ppb)Protenan desmethy10.002ug/L(ppb)Chlorynfios0.0031ug/L(ppb)Protenan desmethy10.0028ug/L(ppb)Chlorynfid0.002ug/L(ppb)Protenan desmethy10.0028ug/L(ppb)Chlorynfid0.001ug/L(ppb)Propechlor A0.0028ug/L(ppb)DEDIA0.05ug/L(ppb)Propechlor A0.0028ug/L(ppb)Deethyl atrazine0.001ug/L(ppb)Propechlor A0.0028ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Prosulfaron0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.002ug/L(ppb)Diestopropyl atrazine0.001ug/L(ppb)Sinaran0.001ug/L(ppb)Dimethoarand0.001 <td>Bromacil</td> <td>0.0074</td> <td>ug/L (ppb)</td> <td>Nicosulfuron</td> <td>0.011</td> <td></td>	Bromacil	0.0074	ug/L (ppb)	Nicosulfuron	0.011					
Carbaryl0.064ug/L (pp)NOA 4472040.001ug/L (pp)Carbofuran0.0052ug/L (pp)Norflurazon desmethyl0.02ug/L (pp)Chorynfios0.0131ug/L (pp)Norflurazon desmethyl0.02ug/L (pp)Chorsuffuron0.0056ug/L (pp)Pekram0.014ug/L (pp)Chorsuffuron0.0015ug/L (pp)Prometon0.0021ug/L (pp)Chorparlad0.0022ug/L (pp)Prometon0.0028ug/L (pp)Destryl atrzine0.0017ug/L (pp)Propachlor OA0.001ug/L (pp)Destryl atrzine0.001ug/L (pp)Prosulfaron0.003ug/L (pp)Diaroha0.022ug/L (pp)Prosulfaron0.003ug/L (pp)Diaroha0.023ug/L (pp)Prosulfaron0.003ug/L (pp)Diaroha0.023ug/L (pp)Simazine0.002ug/L (pp)Direntenamid0.001ug/L (pp)Simazine0.002ug/L (pp)Dimethenamid OA0.0011ug/L (pp)Silisulfaron0.001ug/L (pp)Dimethenamid OA0.0013ug/L (pp)Tetraconazle0.001ug/L (pp)Dimethenamid OA0.0013ug/L (pp)Tetraconazle0.001ug/L (pp)Dimethenamid OA0.0013ug/L (pp)Tetraconazle0.001ug/L (pp)Ehopop0.0012ug/L (pp)Tetraconazle0.0022ug/L (pp)Ehopop0.0012ug/L (pp)Titanonazle0.0053u	Bromoxynil	0.006		NOA 407854	0.0052					
Curbofuran0.00050ug/L (pp)Norflurazon desmethyl0.000ug/L (pp)Chlorpyrifos0.0031ug/L (pp)Peloram0.014ug/L (pp)Chlorpyrifos0.0036ug/L (pp)Peloram0.014ug/L (pp)Clofnafop-propargylacid0.0013ug/L (pp)Pemeton0.0028ug/L (pp)Depyralid0.0022ug/L (pp)Pometon0.0028ug/L (pp)DEDIA0.0017ug/L (pp)Propachlor OA0.0034ug/L (pp)Destryl atrzine0.0017ug/L (pp)Propachlor OA0.0035ug/L (pp)Dienoronazok0.001ug/L (pp)Prosuflaroa0.0025ug/L (pp)Dienoronazok0.001ug/L (pp)Prosuflaroa0.0026ug/L (pp)Dimethenamid0.0011ug/L (pp)Simazine0.0026ug/L (pp)Dimethenamid OA0.0038ug/L (pp)Sufoneturon methyl0.001ug/L (pp)Dimethenamid OA0.0031ug/L (pp)Tebucinazole0.001ug/L (pp)Dimethenamid OA0.0031 <td< td=""><td>Carbaryl</td><td>0.04</td><td></td><td>NOA 447204</td><td>0.01</td><td></td></td<>	Carbaryl	0.04		NOA 447204	0.01					
Chlopyrifos0.03 $ug/L (ppb)$ Norflurazon desmethyl0.02 $ug/L (ppb)$ Chlorsulfuron0.0056 $ug/L (ppb)$ Pickoram0.14 $ug/L (ppb)$ Clodinafop-propargylacid0.013 $ug/L (ppb)$ Prometon0.0051 $ug/L (ppb)$ Clogyralid0.022 $ug/L (ppb)$ Propachlor0.0051 $ug/L (ppb)$ DEDIA0.05 $ug/L (ppb)$ Propachlor OA0.004 $ug/L (ppb)$ Detshylatrazine0.001 $ug/L (ppb)$ Prosulfuron0.005 $ug/L (ppb)$ Dicsopropyl atrazine0.001 $ug/L (ppb)$ Pyrosulfuron0.005 $ug/L (ppb)$ Dicnoconazole0.022 $ug/L (ppb)$ Pyrosulfuron0.003 $ug/L (ppb)$ Dimethenamid0.01 $ug/L (ppb)$ Silfoneturon methyl0.011 $ug/L (ppb)$ Dimethoamid OA0.003 $ug/L (ppb)$ Silfoneturon methyl0.011 $ug/L (ppb)$ Dimethoamid OA0.001 $ug/L (ppb)$ Silfoneturon methyl0.011 $ug/L (ppb)$ Dimethoate0.001 $ug/L (ppb)$ Teluconazole0.001 $ug/L (ppb)$ Dinor0.011 $ug/L (ppb)$ Teluconazole0.002 $ug/L (ppb)$ Dinor0.011 $ug/L (ppb)$ Teluconazole0.001 $ug/L (ppb)$ Dinor0.012 $ug/L (ppb)$ Teluconazole0.002 $ug/L (ppb)$ Dinor0.012 $ug/L (ppb)$ Teluconazole0.002 $ug/L (ppb)$ Floatazone0.0023 $ug/L (ppb)$ Teluconazole0.002	Carbofuran	0.0052		Norflurazon	0.02					
Chlorsulfaron 0.0066 $y/L(pb)$ Pickram 0.14 $y/L(pb)$ Clodinafop-propargylacid 0.013 $ug/L(pb)$ Prometon 0.0051 $ug/L(pb)$ Clopyniki 0.022 $ug/L(pb)$ Propachlor 0.0028 $ug/L(pb)$ DEDA 0.05 $ug/L(pb)$ Propachlor OA 0.004 $ug/L(pb)$ Dethyl atrazine 0.001 $ug/L(pb)$ Propachlor OA 0.002 $ug/L(pb)$ Dicamba 0.022 $ug/L(pb)$ Propachlor OA 0.003 $ug/L(pb)$ Dicamba 0.022 $ug/L(pb)$ Propachlor OA 0.003 $ug/L(pb)$ Dicamba 0.022 $ug/L(pb)$ Propachlor OA 0.003 $ug/L(pb)$ Directonazok 0.01 $ug/L(pb)$ Stalfourtion methyl 0.026 $ug/L(pb)$ Dimethenamid OA 0.0038 $ug/L(pb)$ Tebuconazole 0.001 $ug/L(pb)$ Dimethenamid OA 0.001 $ug/L(pb)$ Tebuconazole 0.001 $ug/L(pb)$ Dimethenamid OA 0.				Norflurazon desmethyl	0.02					
Cloinafop-propargylacid0.013ug/L (ppb)Prometon0.0051ug/L (ppb)Clopynid0.002ug/L (ppb)Propachlor OA0.0028ug/L (ppb)DEDA0.011ug/L (ppb)Propachlor OA0.0004ug/L (ppb)Decihylatrazine0.0017ug/L (ppb)Propachlor OA0.001ug/L (ppb)Decinylatrazine0.001ug/L (ppb)Propachlor OA0.002ug/L (ppb)Dicamba0.022ug/L (ppb)Pyrosulfatole0.023ug/L (ppb)Difenconazole0.002ug/L (ppb)Simazine0.002ug/L (ppb)Dimethenamid0.003ug/L (ppb)Simazine0.002ug/L (ppb)Dimethenamid OA0.0038ug/L (ppb)Simazine0.003ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Simazine0.003ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Silfosuffaron0.004ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Sulfosuffaron0.003ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Tebuconazole0.001ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Tebuconazole0.001ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Tebuconazole0.002ug/L (ppb)Dimethenamid OA0.0031ug/L (ppb)Tebuconazole0.002ug/L (ppb)Fehoreonazole0.0031ug/L (ppb)Tebuconazole0.002ug/L (ppb)Fucarbazone <td></td> <td>0.0056</td> <td></td> <td></td> <td>0.14</td> <td></td>		0.0056			0.14					
Clopyniki 0.022 $ug/L(ppb)$ Propachlor 0.0028 $ug/L(ppb)$ DEDIA 0.5 $ug/L(ppb)$ Propachlor OA 0.0094 $ug/L(ppb)$ Deethyl atrazine 0.0017 $ug/L(ppb)$ Propiconazole 0.01 $ug/L(ppb)$ Deisopropyl atrazine 0.01 $ug/L(ppb)$ Prosulfuron 0.005 $ug/L(ppb)$ Dicamba 0.22 $ug/L(ppb)$ Pyrasulfatole 0.023 $ug/L(ppb)$ Difenconazole 0.02 $ug/L(ppb)$ Pyrossulan 0.022 $ug/L(ppb)$ Dimethenamid 0.01 $ug/L(ppb)$ Simizrine 0.0026 $ug/L(ppb)$ Dimethoate 0.0011 $ug/L(ppb)$ Sulfoxulfuron 0.0054 $ug/L(ppb)$ Dinron 0.01 $ug/L(ppb)$ Sulfoxulfuron 0.0054 $ug/L(ppb)$ Dinron 0.01 $ug/L(ppb)$ Tebuconazole 0.0011 $ug/L(ppb)$ Dinron 0.012 $ug/L(ppb)$ Tebuconazole 0.0011 $ug/L(ppb)$ Ethoprop 0.012 $ug/L(ppb)$ Tebuconazole 0.002 $ug/L(ppb)$ Flucarbazone 0.0021 $ug/L(ppb)$ Tehotinone 0.022 $ug/L(ppb)$ Flucarbazone 0.0032 $ug/L(ppb)$ Thifenentiforant 0.002 $ug/L(ppb)$ Flucarbazone 0.0032 $ug/L(ppb)$ Thifenentiforant 0.002 $ug/L(ppb)$ Flucarbazone 0.0032 $ug/L(ppb)$ Trakoxydim 0.0051 $ug/L(ppb)$ Flucarbazone 0.0032 $ug/L(ppb)$ Trakoxydim 0.0		0.013			0.0051					
DEDIA0.00ug/L (ppb)Propachlor OA0.0004ug/L (ppb)Deethyl atrazine0.0017ug/L (ppb)Propiconazole0.01ug/L (ppb)Deisopropyl atrazine0.01ug/L (ppb)Prosulfaron0.003ug/L (ppb)Dicamba0.02ug/L (ppb)Prosulfatole0.023ug/L (ppb)Dienconazole0.01ug/L (ppb)Strazine0.0026ug/L (ppb)Dimethenamid0.001ug/L (ppb)Stufformeturon methyl0.001ug/L (ppb)Dimethenamid OA0.0011ug/L (ppb)Stufformeturon methyl0.01ug/L (ppb)Dimethenamid OA0.0011ug/L (ppb)Stufformeturon methyl0.01ug/L (ppb)Dimethenamid OA0.0011ug/L (ppb)Stufformeturon methyl0.01ug/L (ppb)Dinon0.011ug/L (ppb)Tebuconazole0.001ug/L (ppb)Dinon0.0012ug/L (ppb)Tebutiuron0.001ug/L (ppb)Ehoprop0.0012ug/L (ppb)Tembotrione0.02ug/L (ppb)Flucarbazone0.0012ug/L (ppb)Thiarethoxam0.02ug/L (ppb)Flucarbazone sulfonamide0.0033ug/L (ppb)Titienoazole0.0051ug/L (ppb)Flucarbazone0.0053ug/L (ppb)Titienoazole0.0051ug/L (ppb)Flucarbazone sulfonamide0.0053ug/L (ppb)Titienoazole0.0051ug/L (ppb)Flucarbazone0.0053ug/L (ppb)Titienoazole0.0051ug/L (ppb) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Dethyl atrazine0.0017 ug/L (ppb)Propiconazole0.01 ug/L (ppb)Deisopropyl atrazine0.01 ug/L (ppb)Prosulfuron0.005 ug/L (ppb)Dicamba0.22 ug/L (ppb)Pyrasulfatole0.023 ug/L (ppb)Difenoconazole0.02 ug/L (ppb)Pyrossulam0.027 ug/L (ppb)Dimethenamid0.01 ug/L (ppb)Simazine0.0026 ug/L (ppb)Dimethenamid OA0.0038 ug/L (ppb)Sulforneturon methyl0.01 ug/L (ppb)Dimethoate0.0011 ug/L (ppb)Sulfosulfuron0.0054 ug/L (ppb)Dinon0.01 ug/L (ppb)Tebuconazole0.01 ug/L (ppb)Dinon0.012 ug/L (ppb)Tebuconazole0.011 ug/L (ppb)Ehofuresate0.025 ug/L (ppb)Tebuconazole0.0011 ug/L (ppb)Fenbuconazole0.0012 ug/L (ppb)Tebuchiaron0.022 ug/L (ppb)Flucarbazone0.0012 ug/L (ppb)Tetraconazole0.002 ug/L (ppb)Flucarbazone sulfonamide0.0037 ug/L (ppb)Tafkoxydim0.025 ug/L (ppb)Flurestypyr0.035 ug/L (ppb)Trakoxydim acid0.005 ug/L (ppb)Glyphosate1.0 ug/L (ppb)Trakoxydim acid0.005 ug/L (ppb)Halosulfuron methyl0.01 ug/L (ppb)Trakoxydim acid0.03 ug/L (ppb)Hurdsypyr0.035 ug/L (ppb)Trakoxydim acid<		0.5			0.0094					
Deisopropylatazine0.01 $ug/L(pp)$ Prosulfuron0.005 $ug/L(pp)$ Dicamba0.02 $ug/L(pp)$ Pyrasulfatole0.03 $ug/L(pp)$ Difenoconazole0.02 $ug/L(pp)$ Pyrosulam0.07 $ug/L(pp)$ Dimethenamid0.01 $ug/L(pp)$ Simazine0.0026 $ug/L(pp)$ Dimethenamid OA0.0038 $ug/L(pp)$ Sulfometuron methyl0.01 $ug/L(pp)$ Dimethenamid OA0.0011 $ug/L(pp)$ Sulfometuron methyl0.01 $ug/L(pp)$ Dimethoate0.0011 $ug/L(pp)$ Tebuconazole0.01 $ug/L(pp)$ Dinorn0.01 $ug/L(pp)$ Tebuconazole0.001 $ug/L(pp)$ Ehoprop0.012 $ug/L(pp)$ Tebuconazole0.0011 $ug/L(pp)$ Ehoprop0.012 $ug/L(pp)$ Tetraconazole0.0062 $ug/L(pp)$ Fucarbazone0.0012 $ug/L(pp)$ Tetraconazole0.0025 $ug/L(pp)$ Fucarbazone0.0033 $ug/L(pp)$ Trakoxydim0.005 $ug/L(pp)$ Furoxypyr0.035 $ug/L(pp)$ Trakoxydim acid0.005 $ug/L(pp)$ Glutaric Acid0.0074 $ug/L(pp)$ Trailate0.3 $ug/L(pp)$ Glyphosate10 $ug/L(pp)$ Trailate0.3 $ug/L(pp)$ Halsulfuron0.025 $ug/L(pp)$ Trailate0.3 $ug/L(pp)$ Halsulfuron0.005 $ug/L(pp)$ Trailate0.3 $ug/L(pp)$ Hubord0.005 $ug/L(pp)$ Trailate0.3<					0.01					
Dicamba0.22ug/L (pb)Pyrasulfatole0.023ug/L (pp)Difenoconazole0.02ug/L (pp)Pyroxulam0.027ug/L (pp)Dimethenamid0.01ug/L (pp)Simazine0.0026ug/L (pp)Dimethenamid OA0.0038ug/L (pp)Sulfometuron methyl0.01ug/L (pp)Dimethoate0.0011ug/L (pp)Sulfometuron methyl0.01ug/L (pp)Dinorn0.01ug/L (pp)Tebuconazole0.011ug/L (pp)Ethofumesate0.025ug/L (pp)Tebutniuron0.0011ug/L (pp)Ethoprop0.012ug/L (pp)Tetraconazole0.0062ug/L (pp)Fucarbazone0.0012ug/L (pp)Tetraconazole0.0062ug/L (pp)Fucarbazone0.0007ug/L (pp)Thiamethoxam0.02ug/L (pp)Furoxypyr0.0035ug/L (pp)Trakoxydim0.0051ug/L (pp)Glutaric Acid0.0074ug/L (pp)Trakoxydimacid0.0057ug/L (pp)Glutaric Acid0.0074ug/L (pp)Trakoxydimacid0.0057ug/L (pp)Habsulfuron methyl0.01ug/L (pp)Trakoxydimacid0.0057ug/L (pp)Habsulfuron methyl0.01ug/L (pp)Trakoxydimacid0.0057ug/L (pp)Glutaric Acid0.0074ug/L (pp)Trakoxydimacid0.0057ug/L (pp)Habsulfuron methyl0.01ug/L (pp)Trakoxydimacid0.026ug/L (pp)Habsulfuron methyl0.01ug/L					0.005					
Difenconazole 0.02 ug/L (ppb) Pyrossulam 0.027 ug/L (ppb) Dimethenamid 0.01 ug/L (ppb) Simazine 0.0026 ug/L (ppb) Dimethenamid OA 0.0038 ug/L (ppb) Sulfometuron methyl 0.01 ug/L (ppb) Dimethenamid OA 0.0038 ug/L (ppb) Sulfometuron methyl 0.01 ug/L (ppb) Dimethenamid OA 0.0011 ug/L (ppb) Sulfosulfuron 0.0034 ug/L (ppb) Dimetheamid OA 0.0011 ug/L (ppb) Sulfosulfuron 0.001 ug/L (ppb) Dimetheamid OA 0.0011 ug/L (ppb) Tebuconazole 0.01 ug/L (ppb) Dimetheamid OA 0.0012 ug/L (ppb) Tebuchiuron 0.001 ug/L (ppb) Ethoprop 0.012 ug/L (ppb) Tetaconazole 0.0026 ug/L (ppb) Flucarbazone 0.0012 ug/L (ppb) Tetaconazole 0.0026 ug/L (ppb) Flucarbazone sulfonamide 0.0003 ug/L (ppb) Thifensulfuron 0.026 ug/L (ppb)										
Dimethenamid 0.01 $ug/L (ppb)$ Simazine 0.0026 $ug/L (ppb)$ Dimethenamid OA 0.0038 $ug/L (ppb)$ Sulfometuron methyl 0.01 $ug/L (ppb)$ Dimethoate 0.0011 $ug/L (ppb)$ Sulfometuron methyl 0.01 $ug/L (ppb)$ Diuron 0.01 $ug/L (ppb)$ Sulfometuron methyl 0.0054 $ug/L (ppb)$ Ethofumesate 0.025 $ug/L (ppb)$ Tebuconazole 0.011 $ug/L (ppb)$ Ethoprop 0.012 $ug/L (ppb)$ Tembotrione 0.22 $ug/L (ppb)$ Flucarbazone 0.0053 $ug/L (ppb)$ Tetraconazole 0.0062 $ug/L (ppb)$ Flucarbazone sulfonamide 0.0007 $ug/L (ppb)$ Thiamethoxam 0.026 $ug/L (ppb)$ Flucarbazone sulfonamide 0.0074 $ug/L (ppb)$ Tralkoxydim acid 0.0051 $ug/L (ppb)$ Glutaric Acid 0.0074 $ug/L (ppb)$ Tralkoxydim acid 0.0057 $ug/L (ppb)$ Hadsulfuron methyl 0.01 $ug/L (ppb)$ Triallate 0.3 $ug/L (ppb)$ Hadsulfuron methyl 0.0059 $ug/L (ppb)$ Trialoxydim acid 0.026 $ug/L (ppb)$ Hadsulfuron methyl 0.0059 $ug/L (ppb)$ Trialute 0.3 $ug/L (ppb)$ Hydroxy atrazine 0.0064 $ug/L (ppb)$ Triaconazole 0.011 $ug/L (ppb)$	Difenoconazole	0.02		•	0.027					
Dimethenamid OA 0.0038 $ug/L (pp)$ Sulfometuron methyl 0.01 $ug/L (pp)$ Dimethoate 0.0011 $ug/L (ppb)$ Sulfosulfuron 0.0054 $ug/L (ppb)$ Diuron 0.01 $ug/L (ppb)$ Tebuconazole 0.01 $ug/L (ppb)$ Ethofumesate 0.025 $ug/L (ppb)$ Tebutiuron 0.0011 $ug/L (ppb)$ Ethoprop 0.012 $ug/L (ppb)$ Tebutiuron 0.0011 $ug/L (ppb)$ Fucarbazone 0.0053 $ug/L (ppb)$ Tetraconazole 0.0062 $ug/L (ppb)$ Flucarbazone sulfonamide 0.00071 $ug/L (ppb)$ Thiamethoxam 0.026 $ug/L (ppb)$ Flucarbazone sulfonamide 0.0035 $ug/L (ppb)$ Tralkoxydim acid 0.0051 $ug/L (ppb)$ Flucarbazone sulfonamide 0.0074 $ug/L (ppb)$ Tralkoxydim acid 0.0051 $ug/L (ppb)$ Glutaric Acid 0.0074 $ug/L (ppb)$ Tralkoxydim acid 0.0057 $ug/L (ppb)$ Halosulfuron methyl 0.01 $ug/L (ppb)$ Triallate 0.3 $ug/L (ppb)$ Halosulfuron methyl 0.0059 $ug/L (ppb)$ Trialupyr 0.011 $ug/L (ppb)$ Halosulfuron methyl 0.0059 $ug/L (ppb)$ Trialupyr 0.026 $ug/L (ppb)$ Hydroxy atrazine 0.0064 $ug/L (ppb)$ Triaconazole 0.032 $ug/L (ppb)$										
Dimethoate 0.0011 ug/L (ppb) Suffosulfuron 0.0054 ug/L (ppb) ug/L (ppb) Diuron 0.001 ug/L (ppb) Tebuconazole 0.001 ug/L (ppb) Ug/L (ppb) Tebuchiuron 0.001 ug/L (ppb) Tebuchiuron 0.002 ug/L (ppb) Telaconazole 0.002 ug/L (ppb) Telaconazole 0.002 ug/L (ppb) Telaconazole 0.0051 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Diuron 0.01 ug/L (pp) Tebuconazole 0.01 ug/L (pp) Ethofumesate 0.025 ug/L (ppb) Tebucinazole 0.001 ug/L (ppb) Ethoprop 0.012 ug/L (ppb) Tebucinazole 0.002 ug/L (ppb) Fenbuconazole 0.0053 ug/L (ppb) Tembotrione 0.02 ug/L (ppb) Flucarbazone 0.0012 ug/L (ppb) Tetraconazole 0.002 ug/L (ppb) Flucarbazone sulfonamide 0.0007 ug/L (ppb) Thiensulfuron 0.026 ug/L (ppb) Flucarbazone sulfonamide 0.0007 ug/L (ppb) Tralkoxydim 0.0051 ug/L (ppb) Fluretsulam 0.063 ug/L (ppb) Tralkoxydim acid 0.0051 ug/L (ppb) Glutaric Acid 0.0074 ug/L (ppb) Trailwoxydim acid 0.0057 ug/L (ppb) Haosulfuron methyl 0.01 ug/L (ppb) Traillate 0.3 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy a	Dimethoate	0.0011		*	0.0054					
Ehofumesate 0.025 ug/L (ppb) Tebuthiuron 0.0011 ug/L (ppb) Ethoprop 0.012 ug/L (ppb) Tebuthiuron 0.0011 ug/L (ppb) Fenbuconazole 0.0053 ug/L (ppb) Tembotrione 0.02 ug/L (ppb) Flucarbazone 0.0012 ug/L (ppb) Tetraconazole 0.002 ug/L (ppb) Flucarbazone sulfonamide 0.0007 ug/L (ppb) Thiamethoxam 0.026 ug/L (ppb) Flurestsulam 0.063 ug/L (ppb) Tralkoxydim 0.0051 ug/L (ppb) Flurestsulam 0.063 ug/L (ppb) Tralkoxydim acid 0.0051 ug/L (ppb) Glutaric Acid 0.0074 ug/L (ppb) Triadimefon 0.035 ug/L (ppb) Halosulfuron methyl 0.01 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)										
Ethoprop 0.012 ug/L (ppb) Tembotrione 0.02 ug/L (ppb) Fenbuconazole 0.0053 ug/L (ppb) Tetraconazole 0.0062 ug/L (ppb) Flucarbazone 0.0012 ug/L (ppb) Tetraconazole 0.002 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thiamethoxam 0.026 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thifensulfuron 0.026 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Traikoxydim 0.0051 ug/L (ppb) Flucarbazone sulfonamide 0.0063 ug/L (ppb) Traikoxydim acid 0.0051 ug/L (ppb) Flucarbazone 0.0074 ug/L (ppb) Traikoxydim acid 0.0057 ug/L (ppb) Glutaric A cid 0.0074 ug/L (ppb) Traikoxydim acid 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Traiallate 0.3 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb)			• • • · ·		0.0011					
Penbuconazole 0.0053 ug/L (ppb) Tetraconazole 0.0062 ug/L (ppb) Flucarbazone 0.0012 ug/L (ppb) Thiamethoxam 0.02 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thiamethoxam 0.02 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thifensulfuron 0.026 ug/L (ppb) Fluretsulam 0.063 ug/L (ppb) Tralkoxydim 0.0051 ug/L (ppb) Glutaric A cid 0.0074 ug/L (ppb) Trailmefon 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Triallate 0.3 ug/L (ppb) Heazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)										
Flucarbazone 0.0012 ug/L (ppb) Thiamethoxam 0.002 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thifmethoxam 0.002 ug/L (ppb) Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thifmethoxam 0.026 ug/L (ppb) Flucarbazone sulfonamide 0.063 ug/L (ppb) Thifmethoxam 0.0051 ug/L (ppb) Flucarbazone sulfonamide 0.063 ug/L (ppb) Tralkoxydim 0.0051 ug/L (ppb) Flucarbazone 0.0074 ug/L (ppb) Tralkoxydim acid 0.0057 ug/L (ppb) Glutaric A cid 0.0074 ug/L (ppb) Trialinefon 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Triallate 0.3 ug/L (ppb) Halosulfuron methyl 0.01 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)					0.0062	• • • • ·				
Flucarbazone sulfonamide 0.00097 ug/L (ppb) Thifensulfuron 0.026 ug/L (ppb) Fluenetsulam 0.063 ug/L (ppb) Tralkoxydim 0.0051 ug/L (ppb) Fluroxypyr 0.035 ug/L (ppb) Tralkoxydim acid 0.005 ug/L (ppb) Glutaric Acid 0.0074 ug/L (ppb) Triadimefon 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Triallate 0.3 ug/L (ppb) Hadosulfuron methyl 0.01 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)				Thiamethoxam						
Flumetsulam 0.063 ug/L (ppb) Talkoxydim 0.005 ug/L (ppb) Flurosypyr 0.035 ug/L (ppb) Talkoxydim acid 0.005 ug/L (ppb) Glutaric Acid 0.0074 ug/L (ppb) Triadimefon 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Triallate 0.3 ug/L (ppb) Halosulfuron methyl 0.01 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)	Flucarbazone sulfonamide	0.00097		Thifensulfuron	0.026					
Furoxypyr 0.035 ug/L (ppb) Trakoxydimacid 0.005 ug/L (ppb) Glutaric Acid 0.0074 ug/L (ppb) Triadimefon 0.0057 ug/L (ppb) Glyphosate 10 ug/L (ppb) Triadimefon 0.035 ug/L (ppb) Halosulfuron methyl 0.01 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)										
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Gyphosate 10 ug/L (ppb) Triallate 0.3 ug/L (ppb) Halosulfuron methyl 0.01 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)					-					
Halosulfuron methyl 0.01 ug/L (ppb) Triasulfuron 0.026 ug/L (ppb) Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)										
Hexazinone 0.0059 ug/L (ppb) Triclopyr 0.011 ug/L (ppb) Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)	71					• • • •				
Hydroxy atrazine 0.0064 ug/L (ppb) Triticonazole 0.032 ug/L (ppb)			• • • · ·							
	Imazalil	0.01	ug/L (ppb)		0.052	-0 - (PPC)				

APPENDIX B

INDIVIDUAL SAMPLE RESULTS

Groundwater Laboratory Results, Billings, 2010													
Site ID	Date	2,4-D (µg/L)	Acetachlor ESA (µg/L)	Alachlor ESA (µg/L)	Alachlor OA (µg/L)	Atrazine (µg/L)	Bentazon (µg/L)	Bromacil (μg/L)	Clopyralid (µg/L)	Deethyl deisopropal atrazine (µg/L)	Deethyl Atrazine (µg/L)	Deisopropyl atrazine (µg/L)	Diuron (µg/L)
	5/31/2010	ND	ND	0.041	ND	ND	<0.0011	ND	ND	ND	ND	ND	ND
BILG-1	8/31/2010	ND	ND	0.044	ND	ND	<0.0011	ND	ND	ND	ND	ND	ND
BILG-2	6/2/2010	ND	<0.01	0.12	<0.0034	ND	<0.0011	ND	ND	ND	ND	ND	ND
	5/31/2010	ND	ND	0.076	ND	ND	<0.0011	ND	ND	ND	ND	ND	ND
BILG-3	8/31/2010	ND	ND	0.071	ND	ND	<0.0011	ND	ND	ND	ND	ND	ND
	6/1/2010	ND	ND	<0.011	ND	<0.0022	ND	ND	ND	ND	0.0051	<0.01	ND
BILG-4	8/31/2010	ND	ND	<0.011	ND	< 0.0022	ND	ND	ND	<0.5	0.0045	<0.01	ND
	6/2/2010	ND	ND	ND	ND	<0.0022	ND	ND	ND	ND	0.0025	ND	ND
BILG -5	9/1/2010	ND	ND	ND	ND	0.0028	ND	ND	ND	ND	0.0045	ND	ND
BILG -6	6/2/2010	ND	ND	<0.011	ND	ND	ND	0.64	ND	ND	<0.0017	ND	<0.01
	5/31/2010	<0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -7	8/31/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -8	9/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	6/2/2010	ND	ND	ND	ND	0.0071	ND	2.0	ND	ND	0.0036	<0.01	ND
BILG -9	9/1/2010	ND	ND	ND	ND	0.0076	ND	2.3	ND	ND	0.0047	<0.01	ND
	6/2/2010	<0.0045	ND	ND	ND	0.0045	ND	ND	ND	ND	0.02	ND	ND
BILG -10	9/1/2010	<0.0045	ND	ND	ND	0.0052	ND	ND	ND	ND	0.024	ND	ND
DUC 11	6/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -11	9/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -12	6/1/2010	ND	ND	ND	ND	ND	ND	ND	<0.022	ND	ND	ND	ND
BILG-12	9/2/2010	ND	ND	ND	ND	ND	ND	0.0074	ND	ND	ND	ND	ND
BILG -13	6/1/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DILO -15	9/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -14	6/2/2010	ND	ND	ND	ND	<0.0022	ND	ND	ND	ND	<0.0017	ND	ND
	9/1/2010	ND	ND	ND	ND	<0.0022	ND	ND	ND	ND	<0.0017	ND	ND
BILG -15	5/31/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0017	ND	ND
	8/31/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.0017	ND	ND
BILG -16	5/31/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	8/31/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILG -17	5/31/2010	<0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Human Hea Standard for Water		ND 70	ND 140	<u>ND</u> 2	ND 2	ND 3	ND 200	ND 90	ND 3,500	ND 3	ND 3	ND 3	ND 10

Groundwater Laboratory Results, Billings, 2010												
Site ID	Date	Imazapyr (µg/L)	Imidacloprid (µg/L)	MCPA (μg/L)	MCPP (µg/L)	Metolachlor ESA (µg/L)	Metolachlor OA (µg/L)	Nitrate as Nitrogen (mg/L)	Picloram (µg/L)	Prometon (µg/L)	Simazine (µg/L)	Tebuthiuron (μg/L)
BILG-1	5/31/2010 8/31/2010	<0.011	ND ND	ND ND	ND ND	0.0099	ND ND	3.4	ND ND	ND ND	ND ND	ND ND
BILG-2	6/2/2010	<0.011 0.045	ND	ND	ND	0.014 0.044	0.027	3.8 4.1	ND	0.0085	ND	ND
BILG-2 BILG-3	5/31/2010	0.034	ND	ND	ND	0.044	<0.027	4.2	ND	0.0083	ND	ND
BILG-5	8/31/2010	0.035	ND	ND	ND	0.021	0.021	4.1	ND	0.035	ND	ND
BILG-4	6/1/2010 8/31/2010	<0.011 <0.011	0.22 0.29	ND ND	ND ND	0.14 0.15	ND ND	7.4 7.0	ND ND	0.016 0.016	ND ND	0.011 0.0092
BILG -5	6/2/2010 9/1/2010	0.38	ND ND	<0.0023 ND	ND ND	<0.0025 <0.0025	ND ND	8.4 7.9	ND ND	0.05	0.0049 0.0043	0.0087 0.0098
BILG -6	6/2/2010	0.073	0.0033	ND	ND	0.013	ND	4.3	ND	0.035	< 0.0026	0.0073
BILG -7	5/31/2010 8/31/2010	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5.4 5.2	ND ND	<0.0051 <0.0051	ND ND	ND ND
BILG -8	6/2/2010 9/1/2010	ND <0.011	ND 0.066	ND ND	ND ND	<0.0025 <0.0025	ND ND	2.9 2.9	ND ND	0.032 0.028	<0.0026 <0.0026	ND <0.0011
BILG -9	6/2/2010 9/1/2010	4.7 4.7	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	8.1 8.1	ND ND	0.31	<0.0026 <0.0026	0.17 0.15
BILG -10	6/2/2010 9/1/2010	0.022 0.026	ND ND	0.0044 ND	0.0044 ND	0.16 0.18	<0.021 <0.021	7.2 6.5	ND ND	0.011 0.012	ND ND	0.0033 0.0036
BILG -11	6/1/2010 9/2/2010	0.029 0.013	ND ND	ND ND	ND ND	0.015 0.01	ND ND	1.9 0.58	ND <0.14	0.017 0.014	ND ND	0.003 0.0032
BILG -12	6/1/2010 9/2/2010	0.033 0.03	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	1.6 0.59	ND ND	0.022 0.021	ND ND	<0.0011 <0.0011
BILG -13	6/1/2010 9/2/2010	<0.011 <0.011	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	ND 0.19	ND ND	<0.0051 <0.0051	ND ND	ND ND
BILG -14	6/2/2010 9/1/2010	<0.011 <0.011	0.0024 ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	3.2 2.9	ND <0.14	0.023 0.018	ND ND	<0.0011 <0.0011
BILG -15	5/31/2010 8/31/2010	0.036 0.07	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	4.1 3.9	ND ND	0.051 0.05	ND ND	0.0029 0.0033
BILG -16	5/31/2010 8/31/2010	ND ND	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	5.6 4.2	ND ND	<0.0051 <0.0051	ND ND	ND ND
BILG -17	5/31/2010 8/31/2010	ND ND	ND ND	ND ND	ND ND	<0.0025 <0.0025	ND ND	3.1 3.4	ND ND	ND ND	ND ND	ND ND
	lealth Standard inking Water	21,000	400	4	7	100	100	10	500	100	4	500

Surface Water Laboratory Results, Billings, 2010													
		2,4-D (µg/L)	Alachlor ESA (µg/L)	Atrazine (μg/L)	Azoxystrobin (μg/L)	Bentazon (μg/L)	Bromacil (μg/L)	Carbaryl (µg/L)	Chlorpyrifos (µg/L)	Chlorsulfuron (µg/L)	Clopyralid (μg/L)	Deethyl atrazine (μg/L)	Dicamba (µg/L)
Site ID	Date												
DUCI	6/2/2010	0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS-1	9/2/2010	<0.0045	ND	ND	ND	< 0.0011	ND	ND	ND	ND	ND	ND	ND
BILS-2	6/2/2010	<0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS-2 BILS-3	9/1/2010 6/1/2010 7/14/2010 9/1/2010 9/27/2010	0.011 0.011 0.024 0.011 <0.0045	ND ND ND ND	ND ND ND ND	ND ND ND ND	<0.0011 ND 0.0018 <0.0011 <0.0011	ND ND ND ND	ND ND ND ND	ND ND <0.031 ND ND	ND ND ND ND	ND ND ND ND ND	ND ND <0.0017 <0.0017	ND ND ND ND
	6/2/2010	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS-4	9/2/2010	0.014	ND	ND	ND	0.0015	0.016	ND	ND	ND	ND	ND	ND
	6/2/2010	<0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS -5	9/1/2010	0.016	ND	ND	ND	<0.0011	ND	ND	ND	ND	ND	ND	ND
BILS -6	6/2/2010	0.024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS -7	9/2/2010 6/1/2010 7/14/2010 9/1/2010 9/28/2010	0.017 0.018 0.24 0.12 0.019	ND <0.011 ND <0.011 <0.011	ND ND ND ND	ND ND ND ND	<0.0011 <0.0011 0.19 0.0023 0.0017	0.011 ND ND <0.0074 ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND <0.022 ND ND	<0.0017 ND ND <0.0017 <0.0017	ND ND ND ND
	6/2/2010	<0.0045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS -8	9/1/2010	0.02	ND	ND	ND	0.0012	ND	ND	ND	ND	ND	ND	ND
BILS -9	6/1/2010 7/13/2010 9/1/2010 9/27/2010	0.038 0.33 0.56 0.025	ND ND ND ND	ND < 0.0022 ND ND	ND 0.0056 ND ND	ND 0.041 0.0027 <0.0011	ND 0.0092 0.017 0.022	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND <0.022 ND ND	ND ND <0.0017 <0.0017	ND ND ND ND
BILS -10	6/2/2010 9/1/2010	<0.0045 0.029	ND ND	ND ND	ND ND	ND 0.0015	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
BILS -11	6/1/2010 6/17/2010 7/13/2010 9/1/2010 9/27/2010	0.047 11 0.79 0.28 0.0047	ND ND ND ND	ND <0.0022 <0.0022 ND <0.022	ND ND ND ND ND	ND ND ND ND	0.047 0.039 0.012 0.024 0.069	ND <0.04 ND ND ND	ND ND <0.031 ND ND	ND 0.0066 ND ND ND	ND ND ND ND ND	ND ND <0.0017 <0.0017	ND 2.7 ND ND ND
Human Standard fo Wat	r Drinking	70	2	3	1,000	200	90	700	20	1,750	3,500	3	200

Surface Water Laboratory Results, Billings, 2010													
Site ID	Date	Dimethenamid (µg/L)	Dimethenamid OA (µg/L)	Dimethoate (µg/L)	Diuron (µg/L)	Hydroxy atrazine (µg/L)	Imazamox (µg/L)	Imazapyr (μg/L)	Imidacloprid (µg/L)	Malathion (μg/L)	MCPA (µg/L)	MCPP (µg/L)	Metolachlor ESA (µg/L)
	6/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.003	ND	ND
BILS-1	9/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BILS-2	6/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0059	ND	ND
BILS-3	9/1/2010 6/1/2010 7/14/2010 9/1/2010 9/27/2010	ND ND 0.076 ND ND	ND ND <0.0038 ND ND	ND ND ND ND ND	ND ND ND ND	ND ND <0.0064 ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND 0.005 <0.0023 ND ND	ND ND ND ND	0.0031 <0.0025 0.0041 0.0035 0.0032
	6/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0055	ND	ND
BILS-4	9/2/2010 6/2/2010	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.0032	ND ND	ND ND
BILS -5	9/1/2010	ND	<0.0038	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0034
BILS -6	6/2/2010 9/2/2010	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.011 <0.011	0.0022 ND	ND ND	0.011 ND	0.0063 0.0026	<0.0025 0.003
BILS -7	6/1/2010 7/14/2010 9/1/2010	ND 0.092 ND	ND 0.013 <0.0038	ND ND ND	ND ND <0.01	ND < 0.0064 ND	ND 0.033 ND	ND ND <0.011	ND ND ND	ND ND ND	0.012 0.0031 0.003	<0.0022 0.039 0.0031	0.012 0.01 0.032
	9/28/2010 6/2/2010	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	<0.011 ND	ND ND	ND ND	ND 0.0073	<0.0022 ND	0.023 <0.0025
BILS -8	9/1/2010	ND	<0.0038	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.004
BILS -9	6/1/2010 7/13/2010 9/1/2010 9/27/2010	ND 0.069 ND ND	ND < 0.0038 ND ND	ND ND 0.0012 ND	<0.01 <0.01 0.036 ND	ND < 0.0064 ND ND	ND <0.012 ND ND	0.029 0.038 0.024 0.031	ND ND ND ND	ND ND <0.028 ND	0.0081 0.024 0.055 ND	0.0054 0.016 0.1 0.0056	<0.0025 0.0048 0.0051 0.0068
BILS -10	6/2/2010 9/1/2010	ND ND	ND <0.0038	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0039 0.0072	ND <0.0022	<0.0025 0.004
BILS -11	6/1/2010 6/17/2010 7/13/2010 9/1/2010 9/27/2010	ND ND ND ND	ND ND ND ND ND	ND ND <0.0011 ND	1.3 0.063 <0.01 0.011 ND	ND ND <0.0064 ND <0.0064	ND ND ND ND	0.16 0.014 0.045 0.018 0.032	0.0032 0.041 ND ND 0.0083	ND ND ND ND	0.053 0.014 0.054 0.013 ND	0.009 0.033 0.056 0.054 0.0045	ND ND <0.0025 <0.0025
Human Standard fo Wa	Health r Drinking	400	400		10	70	20,000	21,000	400	100	4	7	100

Surface Water Laboratory Results, Billings, 2010											
Site ID	Date	Metolachlor OA (µg/L)	Nitrate as Nitrogen (mg/L)	Picloram (μg/L)	Prometon (μg/L)	Tebuthiuron (µg/L)	Triclopyr (μg/L)				
	6/2/2010	ND	0.11	ND	ND	ND	ND				
BILS-1	9/2/2010	ND	ND	ND	ND	ND	ND				
BILS-2	6/2/2010	ND	0.12	ND	ND	ND	ND				
	9/1/2010	ND	ND	ND	ND	ND	0.042				
	6/1/2010	ND	0.18	ND	ND	ND	ND				
BILS-3	7/14/2010	ND	0.51	ND	ND	ND	ND				
	9/1/2010	ND	0.23	ND	ND	ND	<0.011				
	9/27/2010	ND	0.2	ND	ND	ND	ND				
BILS-4	6/2/2010	ND	ND	ND	ND	ND	ND				
	9/2/2010	ND	ND	ND	ND	ND	ND				
	6/2/2010	ND	0.12	ND	ND	ND	ND				
BILS -5	9/1/2010	ND	ND	ND	<0.0051	ND	ND				
BILS -6	6/2/2010	ND	1.2	ND	0.17	ND	< 0.011				
	9/2/2010	ND	1.6	ND	<0.0051	ND	ND				
	6/1/2010	ND	0.59	ND	<0.0051	ND	ND				
BILS -7	7/14/2010	ND	0.66	ND	<0.0051	ND	ND				
BILS -/	9/1/2010	<0.021	1.2	ND	0.0078	<0.0011	<0.011				
	9/28/2010	ND	0.74	ND	<0.0051	<0.0011	ND				
BILS -8	6/2/2010	ND	0.12	ND	ND	ND	ND				
	9/1/2010	ND	ND	ND	<0.0051	ND	0.02				
BILS -9	6/1/2010	ND	1.3	ND	0.019	0.0018	<0.011				
	7/13/2010	ND	1.3	ND	0.0054	0.0016	0.034				
	9/1/2010	ND	1.2	ND	0.021	0.0018	<0.011				
BILS -10	9/27/2010 6/2/2010 9/1/2010	ND ND ND	1.5 0.12 ND	ND ND ND	0.0088	0.0029 ND ND	ND ND 0.071				
BILS -11	6/1/2010 6/17/2010 7/13/2010 9/1/2010 9/27/2010	ND ND ND ND	0.65 0.71 0.56	ND <0.14 ND ND	0.012 0.012 0.012 0.018	<0.0011 0.004 0.0013 0.0014	ND <0.011 <0.011 <0.011				
Human Health Sta.	ND	0.91	ND	0.015	0.0015	ND					
Drinking Wa	100	10	500	100	500	350					